To improve traffic performance when on-ramp vehicles merge into the mainstream,a collaborative merging control strategy is proposed to determine the merging sequence and trajectory control of vehicles.Merging trajecto...To improve traffic performance when on-ramp vehicles merge into the mainstream,a collaborative merging control strategy is proposed to determine the merging sequence and trajectory control of vehicles.Merging trajectory planning takes the minimization of vehicle acceleration as the optimization objective.Either the variational method or the quadratic programming method is utilized to determine arrival time,optimal time and control variables for each vehicle.As a supplement,the adaptive cruise control(ACC)model is used to calculate each control variable in each time interval on special occasions.Simulation results show that the cooperative merging control strategy outperforms the optimal control strategy.The root mean square(RMS)of acceleration and the root mean square error(RMSE)of time headway are significantly decreased,with the reductions up to 90.1%and 25.2%,respectively.Under the cooperative control strategy,the difference between the average speed and desired speed consistently approaches zero.In addition,few or no collisions occur.To conclude,the proposed strategy favours the improvements in passenger comfort,traffic efficiency,traffic stability and safety around highway on-ramps.展开更多
基金The Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYCX17_0145,KYCX17_0141)
文摘To improve traffic performance when on-ramp vehicles merge into the mainstream,a collaborative merging control strategy is proposed to determine the merging sequence and trajectory control of vehicles.Merging trajectory planning takes the minimization of vehicle acceleration as the optimization objective.Either the variational method or the quadratic programming method is utilized to determine arrival time,optimal time and control variables for each vehicle.As a supplement,the adaptive cruise control(ACC)model is used to calculate each control variable in each time interval on special occasions.Simulation results show that the cooperative merging control strategy outperforms the optimal control strategy.The root mean square(RMS)of acceleration and the root mean square error(RMSE)of time headway are significantly decreased,with the reductions up to 90.1%and 25.2%,respectively.Under the cooperative control strategy,the difference between the average speed and desired speed consistently approaches zero.In addition,few or no collisions occur.To conclude,the proposed strategy favours the improvements in passenger comfort,traffic efficiency,traffic stability and safety around highway on-ramps.