A negative example shows that the model given by Mason Iri is used to prove that the relationship between the minimum flow problem and the Hamiltonian path problem in a (directed) network, is not rigorous. A new model...A negative example shows that the model given by Mason Iri is used to prove that the relationship between the minimum flow problem and the Hamiltonian path problem in a (directed) network, is not rigorous. A new model called minimum spanning flow in a network is established to revise the old one. It is proved that the problem of determining whether there is a Hamiltonian path from a specified vertex s to another t on a given digraph can be reducible at polynomial time to the problem of constructing a minimum spanning flow in a two-terminal extended network s,t , with the unit capacity for all arcs.展开更多
文摘A negative example shows that the model given by Mason Iri is used to prove that the relationship between the minimum flow problem and the Hamiltonian path problem in a (directed) network, is not rigorous. A new model called minimum spanning flow in a network is established to revise the old one. It is proved that the problem of determining whether there is a Hamiltonian path from a specified vertex s to another t on a given digraph can be reducible at polynomial time to the problem of constructing a minimum spanning flow in a two-terminal extended network s,t , with the unit capacity for all arcs.