汉语是一种有调语言,因此在汉语语音识别中,调型信息起着非常关键的作用。在现有的隐马尔可夫模型(Hidden Markov Model)框架下,如何有效地利用调型信息是有待研究的问题。现有的汉语语音识别系统中主要采用两种方式来使用调型信息:一...汉语是一种有调语言,因此在汉语语音识别中,调型信息起着非常关键的作用。在现有的隐马尔可夫模型(Hidden Markov Model)框架下,如何有效地利用调型信息是有待研究的问题。现有的汉语语音识别系统中主要采用两种方式来使用调型信息:一种是基于Embedded Tone Model,即将调型特征向量与声学特征向量组成一个流去训练模型;一种是Explicit Tone Model,即将调型信息单独建模,再利用此模型优化原有的解码网络。该文将两种方法统一起来,首先利用Embedded Tone Model采用双流而非单流建模得到Nbest备选,再利用Explicit ToneModel对调进行左相关建模并对Nbest得分重新修正以得到识别结果,从而获得性能提升。与传统的无调模型相比,该文方法的识别率的平均绝对提升超过了3.0%,在第三测试集上的绝对提升达到了5.36%。展开更多
文摘汉语是一种有调语言,因此在汉语语音识别中,调型信息起着非常关键的作用。在现有的隐马尔可夫模型(Hidden Markov Model)框架下,如何有效地利用调型信息是有待研究的问题。现有的汉语语音识别系统中主要采用两种方式来使用调型信息:一种是基于Embedded Tone Model,即将调型特征向量与声学特征向量组成一个流去训练模型;一种是Explicit Tone Model,即将调型信息单独建模,再利用此模型优化原有的解码网络。该文将两种方法统一起来,首先利用Embedded Tone Model采用双流而非单流建模得到Nbest备选,再利用Explicit ToneModel对调进行左相关建模并对Nbest得分重新修正以得到识别结果,从而获得性能提升。与传统的无调模型相比,该文方法的识别率的平均绝对提升超过了3.0%,在第三测试集上的绝对提升达到了5.36%。