The growth and development of Jingjiang Taro [Colocasia esculenta(L.) Schott] were observed, laying foundation for highly-yielding cultivation technology system of Xiangsha taro. The results indicate that germinatio...The growth and development of Jingjiang Taro [Colocasia esculenta(L.) Schott] were observed, laying foundation for highly-yielding cultivation technology system of Xiangsha taro. The results indicate that germination of the second taro happened from 46 d after sprouting (7-8 leaves); the first taro began to expand, from 125 d after sprouting (12 leaves) when the the second taro was been formed; the third taro began to form from 141 to 150 d after sprouting (15-16 leaves). The fresh weight of the second and third taros quickly increased from the time of 15 leaves to harvest. Early September is a transformation term of Xiangsha taro from vegetative body dominant to corm growth dominant.展开更多
This paper, with NOAA/AHHRR data for 2 years, discusses the expanding path and extent of suspended sediment from the Changjiang River, and the relationship between the suspended sediment expanding and coastal current ...This paper, with NOAA/AHHRR data for 2 years, discusses the expanding path and extent of suspended sediment from the Changjiang River, and the relationship between the suspended sediment expanding and coastal current systems by analyzing the thermal infrared imagery with the sediment imagery, which is acquired by correlating the atmosphere corrected AVHRR imagery with in-situ suspended sediment data. The coastal current systems affecting the sediment dispersal mainly include: the Taiwan Warm Current (TWC), the Huanghai Sea Mixed Water (HSMW), North Jiangsu near-shore current, and Zhejiang near-shore current etc. In winter, the current systems are stable. Their distribution affects the sediment from north Jiangsu expanding toward the Changjiang estuary in some degree .The front between Zhejiang coastal current and TWC blocks the expanding of sediment toward the sea. In the flood season, apart from the limitation by coastal current systems, the spatial and temporal distribution of suspended sediment is also affected by the runoff, which shows as the jet stream and fresh water. Spring and autumn are the transitional periods of the forming of expanding patterns of flood season and winter respectively. In addition, the re-suspended sediment caused by the wind wave may make the expanding range of near-shore sediment larger.展开更多
Distribution characteristics of soil animals, microorganisms and enzymatic activity were studied in the dry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of the Jins...Distribution characteristics of soil animals, microorganisms and enzymatic activity were studied in the dry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of the Jinsha River, China. Results showed that Hymenoptera, Araneae and Collembola were the dominant groups of soil animals in the plots studied. The numbers of groups and individuals and density of soil animals in the dry red soil series were higher than those in the Vertisol series, and the numbers of individuals and density of soil animals decreased with the degree of soil degradation. Bacteria dominated microbiocoenosis not only in the dry red soils but also in the Vertisols. Microbial numbers of the dry red soil series were higher than those of Vertisol series, and decreased with the degree of soil degradation. The activities of catalase, invertase, urease and alkaline phosphatase declined with the degradation degree and showed a significant decline with depth in the profiles of both the dry red soils and the Vertisols, but activities of polyphenol oxidase and acid and neutral phosphatase showed the same tendencies only in the Vertisols. It was concluded that the characteristics of soil animals, microorganisms and enzymatic activity could be used as the bio-indicators to show the degradation degree of the dry red soils and Vertisols. Correlation among these soil bio-indicators was highly significant.展开更多
The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus of revegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely...The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus of revegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years’ research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed.展开更多
A litterbag experiment of 12 weeks was conducted to study nitrogenmineralization process of prunings of six nitrogen-fixing hedgerowspecies in a dry valley of the Jinsha River. Prunigns wereincorporated into soil or u...A litterbag experiment of 12 weeks was conducted to study nitrogenmineralization process of prunings of six nitrogen-fixing hedgerowspecies in a dry valley of the Jinsha River. Prunigns wereincorporated into soil or used as mulch. The results indicated thatpruning N of the six hedgerow species was mineralized fast in thefirst week and then decreased slowly in the rest of the study period.When prunings were incorporated into soil, the amount of nitrogenmineralized by the end of the first week accounted for 69.9/100,58.2/100, 54.5/100, 43.0/100, 29.6/100 and 20.6/100 of the total N inprungins of Desmodium rensonii, Tephrosia candida, Leucaenaleucoephala, Albizia yunnanensis, Acacia dealbata, and Acaciamearnsii, respectively.展开更多
This study focuses on dynamic mechanism behind the formation of the freshwater zone around the Meimao Sandbank by use of 3D numerical simulation.The Meimao Sandbank is located along the southern bank of the South Pass...This study focuses on dynamic mechanism behind the formation of the freshwater zone around the Meimao Sandbank by use of 3D numerical simulation.The Meimao Sandbank is located along the southern bank of the South Passage in the Changjiang(Yangtze River) estuary,which is considered as a freshwater resource for Shanghai City.Interaction between runoff and tide is the main mechanism of the freshwater zone formation.However,the freshwater zone often suffers from saltwater intrusion in dry season.Tidal oscillation is stronger during spring tides,able to carry freshwater farther seaward.Therefore,it is more likely to occur during the ebb of a spring tide in dry seasons.In addition,the water zone is sensitive to runoff:when runoff decreases,it disappears,and vice versa.The northerly winds favor the formation of the freshwater zone.展开更多
This paper reports the investigation of artificial vegetation communities on excavated slopes in a construction perturbed area of the Xiangjiaba hydroelectric power station in the Jinsha River Basin, P. R. China. Belt...This paper reports the investigation of artificial vegetation communities on excavated slopes in a construction perturbed area of the Xiangjiaba hydroelectric power station in the Jinsha River Basin, P. R. China. Belt transect and random quadrats were used in sampling and recording the vegetation of the four selected plots on the slopes. The community of each plot was characterized based on the coverage, relative importance value, richness, diversity, evenness of species derived from the survey data. Problems of these communities were identified and corresponding regulation measures were proposed to accelerate the positive succession process of the ecosystem. It is demonstrated that the artificial vegetation restoration on the excavated slope has improved the ecological environment.展开更多
基金Supported by Jiangsu Self-innovation Fund for Agricultural Science and Technology[CX(12)2008]~~
文摘The growth and development of Jingjiang Taro [Colocasia esculenta(L.) Schott] were observed, laying foundation for highly-yielding cultivation technology system of Xiangsha taro. The results indicate that germination of the second taro happened from 46 d after sprouting (7-8 leaves); the first taro began to expand, from 125 d after sprouting (12 leaves) when the the second taro was been formed; the third taro began to form from 141 to 150 d after sprouting (15-16 leaves). The fresh weight of the second and third taros quickly increased from the time of 15 leaves to harvest. Early September is a transformation term of Xiangsha taro from vegetative body dominant to corm growth dominant.
文摘This paper, with NOAA/AHHRR data for 2 years, discusses the expanding path and extent of suspended sediment from the Changjiang River, and the relationship between the suspended sediment expanding and coastal current systems by analyzing the thermal infrared imagery with the sediment imagery, which is acquired by correlating the atmosphere corrected AVHRR imagery with in-situ suspended sediment data. The coastal current systems affecting the sediment dispersal mainly include: the Taiwan Warm Current (TWC), the Huanghai Sea Mixed Water (HSMW), North Jiangsu near-shore current, and Zhejiang near-shore current etc. In winter, the current systems are stable. Their distribution affects the sediment from north Jiangsu expanding toward the Changjiang estuary in some degree .The front between Zhejiang coastal current and TWC blocks the expanding of sediment toward the sea. In the flood season, apart from the limitation by coastal current systems, the spatial and temporal distribution of suspended sediment is also affected by the runoff, which shows as the jet stream and fresh water. Spring and autumn are the transitional periods of the forming of expanding patterns of flood season and winter respectively. In addition, the re-suspended sediment caused by the wind wave may make the expanding range of near-shore sediment larger.
基金Project supported by the Foundation for 100 Distinguished Young Scientists, the Chinese Academy of Sciences (No. B010108) the Foundation for the Cooperation Between the Chinese Academy of Sciences Yunnan Province.
文摘Distribution characteristics of soil animals, microorganisms and enzymatic activity were studied in the dry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of the Jinsha River, China. Results showed that Hymenoptera, Araneae and Collembola were the dominant groups of soil animals in the plots studied. The numbers of groups and individuals and density of soil animals in the dry red soil series were higher than those in the Vertisol series, and the numbers of individuals and density of soil animals decreased with the degree of soil degradation. Bacteria dominated microbiocoenosis not only in the dry red soils but also in the Vertisols. Microbial numbers of the dry red soil series were higher than those of Vertisol series, and decreased with the degree of soil degradation. The activities of catalase, invertase, urease and alkaline phosphatase declined with the degradation degree and showed a significant decline with depth in the profiles of both the dry red soils and the Vertisols, but activities of polyphenol oxidase and acid and neutral phosphatase showed the same tendencies only in the Vertisols. It was concluded that the characteristics of soil animals, microorganisms and enzymatic activity could be used as the bio-indicators to show the degradation degree of the dry red soils and Vertisols. Correlation among these soil bio-indicators was highly significant.
基金Under the auspices of the National Natural Science Foundation of China (No .30470297)and theNationalBasicRe-searchProgram ofChina (973 Program)(No .2003CB415201 )
文摘The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus of revegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years’ research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed.
基金Project supported jointly by the Chengdu Di Ao Science Foundation and the Sichuan Provincial Science Foundation for Young Scient
文摘A litterbag experiment of 12 weeks was conducted to study nitrogenmineralization process of prunings of six nitrogen-fixing hedgerowspecies in a dry valley of the Jinsha River. Prunigns wereincorporated into soil or used as mulch. The results indicated thatpruning N of the six hedgerow species was mineralized fast in thefirst week and then decreased slowly in the rest of the study period.When prunings were incorporated into soil, the amount of nitrogenmineralized by the end of the first week accounted for 69.9/100,58.2/100, 54.5/100, 43.0/100, 29.6/100 and 20.6/100 of the total N inprungins of Desmodium rensonii, Tephrosia candida, Leucaenaleucoephala, Albizia yunnanensis, Acacia dealbata, and Acaciamearnsii, respectively.
基金Supported by the Funds for Creative Research Groups of China (No. 40721004)the National Natural Science Foundation of China (No. 40976056)National Major Science and Technology Project of Water Pollution Control and Countermeasures (No. 2008ZX07421-001)
文摘This study focuses on dynamic mechanism behind the formation of the freshwater zone around the Meimao Sandbank by use of 3D numerical simulation.The Meimao Sandbank is located along the southern bank of the South Passage in the Changjiang(Yangtze River) estuary,which is considered as a freshwater resource for Shanghai City.Interaction between runoff and tide is the main mechanism of the freshwater zone formation.However,the freshwater zone often suffers from saltwater intrusion in dry season.Tidal oscillation is stronger during spring tides,able to carry freshwater farther seaward.Therefore,it is more likely to occur during the ebb of a spring tide in dry seasons.In addition,the water zone is sensitive to runoff:when runoff decreases,it disappears,and vice versa.The northerly winds favor the formation of the freshwater zone.
基金Funded by the Natural Science Foundation of China (No. 50879043)the National S & T Support Program of China during the 11th Five-Year Plan Period (No. 2006BAC10B04)
文摘This paper reports the investigation of artificial vegetation communities on excavated slopes in a construction perturbed area of the Xiangjiaba hydroelectric power station in the Jinsha River Basin, P. R. China. Belt transect and random quadrats were used in sampling and recording the vegetation of the four selected plots on the slopes. The community of each plot was characterized based on the coverage, relative importance value, richness, diversity, evenness of species derived from the survey data. Problems of these communities were identified and corresponding regulation measures were proposed to accelerate the positive succession process of the ecosystem. It is demonstrated that the artificial vegetation restoration on the excavated slope has improved the ecological environment.