On the basis of large amount of historical and measured data, this paper analyzed the regional, periodic, frequency, continuing, and response characteristics of droughts and floods in Zhejiang and proposed the concept...On the basis of large amount of historical and measured data, this paper analyzed the regional, periodic, frequency, continuing, and response characteristics of droughts and floods in Zhejiang and proposed the conception of ratio of peak runoff. Main characteristics of droughts and floods in Zhejiang are as follows: 1) The western Zhejiang region is plum rain major control area, and the eastern coastal region of Zhejiang is typhoon major control area. 2) Within a long period in the future, Zhejiang will be in the long period that features droughts. 3) In Zhejiang the 17th century was frequent drought and flood period, the 16th, 19th, and 20th centuries were normal periods, while the 18th century was spasmodic drought and flood period. 4) The severe and medium floods in Zhejiang were all centered around the M-or m-year of the 11-year sunspot activity period. 5) There are biggish years of annual runoff occurred in E1 Nifio year (E) or the following year (E+1) in Zhejiang. The near future evolution trend of droughts and floods in Zhejiang is as follows: 1) Within a relatively long period in the future, Zhejiang Province will be in the long period of mostly drought years. 2) Between 1999 and 2009 this area will feature drought years mainly, while the period of 2010-2020 will feature flood years mostly. 3) Zhejiang has a good response to the sunspot activities, and the years around 2009, 2015, and 2020 must be given due attention, especially around 2020 there might be an extremely severe flood year in Zhejiang. 4) Floods in Zhejiang have good response to El Nifio events, in El Nifio year or the following year much attention must be paid to. And 5) In the future, the first, second, and third severe typhoon years in Zhejiang will be 2009. 2012. and 2015. resnectivelv.展开更多
In this study, the seasonal transition of precipitation over the middle and lower reaches of the Yang-tze River Valley (YRV) from late spring to early summer is investigated. The results show that the seasonal transit...In this study, the seasonal transition of precipitation over the middle and lower reaches of the Yang-tze River Valley (YRV) from late spring to early summer is investigated. The results show that the seasonal transition of precipitation exhibits multi-modes. One of these modes is characterized by an abrupt transition from drought to flood (ATDF) over the middle and lower reaches of the YRV in the seasonal transition of precipitation. It is shown that the ATDF event from May to June 2011 is simply one prominent case of the ATDF mode. The ATDF mode exhibits an obvious decadal variability. The mode has occurred more frequently since 1979, and its amplitude has apparently strengthened since 1994. From the climatic view, the ATDF mode configures a typical seasonal circulation transition from winter to summer, for which the winter circulations are prolonged, and the summer circulations with the rainy season are built up early over the YRV.展开更多
In 1998, the Chinese Government implemented the NFPP (Natural Forest Protection Program), which included logging restrictions, protected areas, replanting, and a range of other policies aimed at safeguarding the sta...In 1998, the Chinese Government implemented the NFPP (Natural Forest Protection Program), which included logging restrictions, protected areas, replanting, and a range of other policies aimed at safeguarding the state of the country's forests and reducing the risk of erosion and flooding. A second phase of this program is currently being discussed. In this paper, contingent valuation is used to estimate the WTP (willingness to pay) for maintaining the program among the inhabitants in Heilongjiang Province in northern China. The results show that, even with fairly conservative assumptions, the aggregated WTP for maintaining the program for another five years is some 3.24 billion yuan per year. This can be compared with the current cost of the Program in the province, which is some 1.57 billion yuan per year.展开更多
基金Under the auspices of Zhejiang Provincial ScienceTechnology Foundation of China(No.2006C23066)
文摘On the basis of large amount of historical and measured data, this paper analyzed the regional, periodic, frequency, continuing, and response characteristics of droughts and floods in Zhejiang and proposed the conception of ratio of peak runoff. Main characteristics of droughts and floods in Zhejiang are as follows: 1) The western Zhejiang region is plum rain major control area, and the eastern coastal region of Zhejiang is typhoon major control area. 2) Within a long period in the future, Zhejiang will be in the long period that features droughts. 3) In Zhejiang the 17th century was frequent drought and flood period, the 16th, 19th, and 20th centuries were normal periods, while the 18th century was spasmodic drought and flood period. 4) The severe and medium floods in Zhejiang were all centered around the M-or m-year of the 11-year sunspot activity period. 5) There are biggish years of annual runoff occurred in E1 Nifio year (E) or the following year (E+1) in Zhejiang. The near future evolution trend of droughts and floods in Zhejiang is as follows: 1) Within a relatively long period in the future, Zhejiang Province will be in the long period of mostly drought years. 2) Between 1999 and 2009 this area will feature drought years mainly, while the period of 2010-2020 will feature flood years mostly. 3) Zhejiang has a good response to the sunspot activities, and the years around 2009, 2015, and 2020 must be given due attention, especially around 2020 there might be an extremely severe flood year in Zhejiang. 4) Floods in Zhejiang have good response to El Nifio events, in El Nifio year or the following year much attention must be paid to. And 5) In the future, the first, second, and third severe typhoon years in Zhejiang will be 2009. 2012. and 2015. resnectivelv.
基金supported by the National Basic Research Program of China (Grant No.2009CB421401)the National Key Technologies R&D Program of China (Grant No. 2009BAC51B02)+1 种基金the National Natural Science Foundation of China (Grant No. 40975022)the Special Scien-tific Research Fund of the Meteorological Public Welfare Profession of China (Grant No. GYHY200906018)
文摘In this study, the seasonal transition of precipitation over the middle and lower reaches of the Yang-tze River Valley (YRV) from late spring to early summer is investigated. The results show that the seasonal transition of precipitation exhibits multi-modes. One of these modes is characterized by an abrupt transition from drought to flood (ATDF) over the middle and lower reaches of the YRV in the seasonal transition of precipitation. It is shown that the ATDF event from May to June 2011 is simply one prominent case of the ATDF mode. The ATDF mode exhibits an obvious decadal variability. The mode has occurred more frequently since 1979, and its amplitude has apparently strengthened since 1994. From the climatic view, the ATDF mode configures a typical seasonal circulation transition from winter to summer, for which the winter circulations are prolonged, and the summer circulations with the rainy season are built up early over the YRV.
文摘In 1998, the Chinese Government implemented the NFPP (Natural Forest Protection Program), which included logging restrictions, protected areas, replanting, and a range of other policies aimed at safeguarding the state of the country's forests and reducing the risk of erosion and flooding. A second phase of this program is currently being discussed. In this paper, contingent valuation is used to estimate the WTP (willingness to pay) for maintaining the program among the inhabitants in Heilongjiang Province in northern China. The results show that, even with fairly conservative assumptions, the aggregated WTP for maintaining the program for another five years is some 3.24 billion yuan per year. This can be compared with the current cost of the Program in the province, which is some 1.57 billion yuan per year.