Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced elect...Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced electrochemical activity for V^2+/V^3+redox reaction.The sample(CP-NH3)treated in NH3 solution demonstrates superior performance in comparison with the sample(CP-NaOH)treated in NaOH solution.X-ray photoelectron spectroscopy results show that oxygen-and nitrogen-containing functional groups have been introduced on CP-NH3 surface by the treatment,and Raman spectra confirm the increased surface defect of CP-NH3.Energy storage performance of cell was evaluated by charge/discharge measurement by using CP-NH3.Usage of CP-NH3 can greatly improve the cell performance with energy efficiency increase of 4.8%at 60 mA/cm^2.The excellent performance of CP-NH3 mainly results from introduction of functional groups as active sites and improved wetting properties.This work reveals that anodic oxidation is a clean,simple,and efficient method for boosting the performance of carbon paper as negative electrode for VRB.展开更多
Developing efficient counter electrodes(CEs)and quantum dots made of earth-abundant and non-toxic elements is essential but still challenging for quantum dot-sensitized solar cells(QDSSCs).Here,we report a facile stra...Developing efficient counter electrodes(CEs)and quantum dots made of earth-abundant and non-toxic elements is essential but still challenging for quantum dot-sensitized solar cells(QDSSCs).Here,we report a facile strategy to prepare self-supported and robust CoS_2and NiS nanocrystals-assembled nanosheets directly grown on carbon paper(MS_xNS@CP)as efficient counter electrodes for QDSSCs.Such CEs integrate the merits of fast electron transfer from interconnected conductive scaffold,efficient mass transfer from hierarchically vertical nanosheet on 3D open substrate,as well as abundant highly active catalytic sites from metal sulphide nanocrystal units.As a result,QDDSCs based on such CoS_2NS@CP and NiS NS@CP CEs achieve a PCE of8.88%and 7.53%,respectively.The detailed analyses suggest that CoS_2NS@CP has the highest catalytic activity and shows the lowest charger transfer resistance,leading to the highest PCE.These findings may inspire the design and exploration of other self-supported efficient CEs by integrating highly active catalysts onto 3D conductive networks for efficient QDSSCs.展开更多
基金Project(NCET-10-0946)supported by Program for New Century Excellent Talents in University of ChinaProject(2017JY0038)supported by Science and Technology Key Project of Sichuan Province,ChinaProject(2013TX8)supported by Titanium and Titanium Alloy Innovation Team of Panzhihua City,China
文摘Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced electrochemical activity for V^2+/V^3+redox reaction.The sample(CP-NH3)treated in NH3 solution demonstrates superior performance in comparison with the sample(CP-NaOH)treated in NaOH solution.X-ray photoelectron spectroscopy results show that oxygen-and nitrogen-containing functional groups have been introduced on CP-NH3 surface by the treatment,and Raman spectra confirm the increased surface defect of CP-NH3.Energy storage performance of cell was evaluated by charge/discharge measurement by using CP-NH3.Usage of CP-NH3 can greatly improve the cell performance with energy efficiency increase of 4.8%at 60 mA/cm^2.The excellent performance of CP-NH3 mainly results from introduction of functional groups as active sites and improved wetting properties.This work reveals that anodic oxidation is a clean,simple,and efficient method for boosting the performance of carbon paper as negative electrode for VRB.
基金supported by the National Natural Science Foundation of China (21573249, 51732004)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12020100)
文摘Developing efficient counter electrodes(CEs)and quantum dots made of earth-abundant and non-toxic elements is essential but still challenging for quantum dot-sensitized solar cells(QDSSCs).Here,we report a facile strategy to prepare self-supported and robust CoS_2and NiS nanocrystals-assembled nanosheets directly grown on carbon paper(MS_xNS@CP)as efficient counter electrodes for QDSSCs.Such CEs integrate the merits of fast electron transfer from interconnected conductive scaffold,efficient mass transfer from hierarchically vertical nanosheet on 3D open substrate,as well as abundant highly active catalytic sites from metal sulphide nanocrystal units.As a result,QDDSCs based on such CoS_2NS@CP and NiS NS@CP CEs achieve a PCE of8.88%and 7.53%,respectively.The detailed analyses suggest that CoS_2NS@CP has the highest catalytic activity and shows the lowest charger transfer resistance,leading to the highest PCE.These findings may inspire the design and exploration of other self-supported efficient CEs by integrating highly active catalysts onto 3D conductive networks for efficient QDSSCs.