Persulfate decontamination technologies utilizing radical‐driven processes are powerful tools for the treatment of a broad range of impurities.However,the design of high‐performance catalytic activators with multi‐...Persulfate decontamination technologies utilizing radical‐driven processes are powerful tools for the treatment of a broad range of impurities.However,the design of high‐performance catalytic activators with multi‐functionality remains a great challenge.Therefore,in this study,three‐dimensional multifunctional FexOy/N‐GN/CNTs(N‐GN:nitrogen‐doped graphene,CNTs:carbon nanotubes)heterojunctions,which can be employed as microwave absorbers and catalysts,were synthesized via a solvothermal method and applied to activate peroxymonosulfate for the degradation of methylene blue(MB).X‐ray diffraction(XRD),Fourier transform infrared spectrometer(FTIR),scanning electron microscope(SEM),and X‐ray photoelectron microscopy(XPS)analyses revealed that the FexOy were anchored in‐situ onto the N‐GN network.Using MB as the model organic dye,various factors,such as degradation systems,PMS loading,initial organic pollutant concentration,and catalyst dosage were optimized.The results revealed that the remarkable efficiency was attributable to the synergistic effects of carbon,nitrogen,and iron‐based species.The oxidation system corresponded to the pseudo‐first‐order kinetic with a k value of^0.33 min^-1.It was demonstrated that both SO4^-and OH^-were the predominant reactive species through quenching experiments.Because these heterojunctions were employed as microwave absorbers and have a semiconductor‐like texture,the Fe/N co‐rich hierarchical porous carbon skeleton favored electron transport and storage.These heterojunctions increase the options for transitional metal catalysts and highlights the importance of designing other heterojunctions for specific applications,such as supercapacitors,energy storage,CO2 capture,and oxygen reduction electrocatalysts.展开更多
Performance of biological phosphorus removal in the oxic-settling-anaerobic(OSA) process was investigated. Cell staining and fluorescent in situ hybridization(FISH) were used to analyze characteristics and microbial c...Performance of biological phosphorus removal in the oxic-settling-anaerobic(OSA) process was investigated. Cell staining and fluorescent in situ hybridization(FISH) were used to analyze characteristics and microbial community of sludge. Experimental results showed that phosphorus removal efficiency was near 60% and the amount of biological phosphorus accumulation in aerobic sludge of the OSA system was up to 26.9 mg/g. Biological phosphorus removal efficiency was partially inhibited by carbon sources in the continuous OSA system. Contrasted to the OSA system,biological phosphorus removal efficiency was enhanced by 14% and the average total phosphorus(TP) contents of aerobic sludge were increased by 0.36 mg/g when sufficient carbon sources were supplied in batch experiments. Staining methods indicated that about 35% of microorganisms had typical characteristics of phosphorus accumulating organisms(PAOs) . FISH analysis demonstrated that PAOMIX-binding bacteria were predominant microbial communities in the OSA system,which accounted for around 28% of total bacteria.展开更多
Considerable efforts have been undertaken to accelerate the breakdown of existing anthropogenic petroleum hydrocarbons (PHCs) by appropriate in situ remediation technologies. In situ phytoremediation, using higher p...Considerable efforts have been undertaken to accelerate the breakdown of existing anthropogenic petroleum hydrocarbons (PHCs) by appropriate in situ remediation technologies. In situ phytoremediation, using higher plants to remove, stabilize, degrade, and/or metabolize hazardous contaminants, has emerged as a promising green technology for cleaning up environments contaminated with PHCs. Weed plants are generally considered to have great potential for use in phytoremediation due to their extensive fibrous root systems and relatively robust characteristics, thus helping establish a strong rhizosphere through contaminated soils. In this review, some important mechanisms involved in phytoremedation of PHC contaminated soils, including phytoaccumulation, phytostabilization, phytodegradation, phytovolatilization, and rhizodegradation, were summarized and discussed. In recent years, a large number of laboratory approaches have been developed to further enhance the phytoremediation efficiency of PHC contaminated soils. The success of these laboratory studies has encouraged researchers to attempt phytoremediation of PHC contaminated soils in the field. However, many limitations still exist in order to successfully apply laboratory experiments to trials in the field.展开更多
基金supported by the National Natural Science Foundation of China(21676039)Innovative talents in Liaoning universities and colleges(LR2017045)the Opening Foundation of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University(2016–04)~~
文摘Persulfate decontamination technologies utilizing radical‐driven processes are powerful tools for the treatment of a broad range of impurities.However,the design of high‐performance catalytic activators with multi‐functionality remains a great challenge.Therefore,in this study,three‐dimensional multifunctional FexOy/N‐GN/CNTs(N‐GN:nitrogen‐doped graphene,CNTs:carbon nanotubes)heterojunctions,which can be employed as microwave absorbers and catalysts,were synthesized via a solvothermal method and applied to activate peroxymonosulfate for the degradation of methylene blue(MB).X‐ray diffraction(XRD),Fourier transform infrared spectrometer(FTIR),scanning electron microscope(SEM),and X‐ray photoelectron microscopy(XPS)analyses revealed that the FexOy were anchored in‐situ onto the N‐GN network.Using MB as the model organic dye,various factors,such as degradation systems,PMS loading,initial organic pollutant concentration,and catalyst dosage were optimized.The results revealed that the remarkable efficiency was attributable to the synergistic effects of carbon,nitrogen,and iron‐based species.The oxidation system corresponded to the pseudo‐first‐order kinetic with a k value of^0.33 min^-1.It was demonstrated that both SO4^-and OH^-were the predominant reactive species through quenching experiments.Because these heterojunctions were employed as microwave absorbers and have a semiconductor‐like texture,the Fe/N co‐rich hierarchical porous carbon skeleton favored electron transport and storage.These heterojunctions increase the options for transitional metal catalysts and highlights the importance of designing other heterojunctions for specific applications,such as supercapacitors,energy storage,CO2 capture,and oxygen reduction electrocatalysts.
基金Project (No. 2006BAC19B04) supported by the National Key Technology R&D Program of China
文摘Performance of biological phosphorus removal in the oxic-settling-anaerobic(OSA) process was investigated. Cell staining and fluorescent in situ hybridization(FISH) were used to analyze characteristics and microbial community of sludge. Experimental results showed that phosphorus removal efficiency was near 60% and the amount of biological phosphorus accumulation in aerobic sludge of the OSA system was up to 26.9 mg/g. Biological phosphorus removal efficiency was partially inhibited by carbon sources in the continuous OSA system. Contrasted to the OSA system,biological phosphorus removal efficiency was enhanced by 14% and the average total phosphorus(TP) contents of aerobic sludge were increased by 0.36 mg/g when sufficient carbon sources were supplied in batch experiments. Staining methods indicated that about 35% of microorganisms had typical characteristics of phosphorus accumulating organisms(PAOs) . FISH analysis demonstrated that PAOMIX-binding bacteria were predominant microbial communities in the OSA system,which accounted for around 28% of total bacteria.
基金National Natural Science Foundation of China (4093073921037002)
文摘Considerable efforts have been undertaken to accelerate the breakdown of existing anthropogenic petroleum hydrocarbons (PHCs) by appropriate in situ remediation technologies. In situ phytoremediation, using higher plants to remove, stabilize, degrade, and/or metabolize hazardous contaminants, has emerged as a promising green technology for cleaning up environments contaminated with PHCs. Weed plants are generally considered to have great potential for use in phytoremediation due to their extensive fibrous root systems and relatively robust characteristics, thus helping establish a strong rhizosphere through contaminated soils. In this review, some important mechanisms involved in phytoremedation of PHC contaminated soils, including phytoaccumulation, phytostabilization, phytodegradation, phytovolatilization, and rhizodegradation, were summarized and discussed. In recent years, a large number of laboratory approaches have been developed to further enhance the phytoremediation efficiency of PHC contaminated soils. The success of these laboratory studies has encouraged researchers to attempt phytoremediation of PHC contaminated soils in the field. However, many limitations still exist in order to successfully apply laboratory experiments to trials in the field.