Tailings of a Pb and Zn mine as a metal-contaminated area (Zone 1) with two pioneer plant species, Peganum harmala and Zygophyllum fabago, were investigated and compared with a non-contaminated area (Zone 2) in th...Tailings of a Pb and Zn mine as a metal-contaminated area (Zone 1) with two pioneer plant species, Peganum harmala and Zygophyllum fabago, were investigated and compared with a non-contaminated area (Zone 2) in the vicinity. Total concentrations of Pb, Zn, and Cu in the soil of Zone 1 were 1 416, 2 217, and 426 mg kg-1, respectively, and all exceeded their ranges in the normal soils. The soil pH was in the neutral range and most of the physical and chemical characteristics of the soils from both zones were almost similar. The species Z. fabago accumulated higher Cu and Zn in its aerial part and roots than the normal plants. On the other hand, their concentrations did not reach the criteria that the species could be considered as a metal hyperaccumulator. The species P. harmala did not absorb metals in its roots; accordingly, the accumulation factor values of these metals were lower than 1. The contents of chlorophyll, biomass, malondialdehyde, and dityrosine in these two species did not vary significantly between the two zones studied. In Zone 1, leaf vacuoles of Z. fabago stored 35.6% and 43.2% of the total leaf Cu and Zn, respectively. However, in this species, the levels of phytochelatins (PCs) and glutathione (GSH) and antioxidant enzyme activities were significantly higher in Zone 1 than in Zone 2. In conclusion, metal exclusion in P. harmala and metal accumulation in Z. fabago were the basic strategies in the two studied pioneer species growing on the metal-contaminated zone. In response to metal stress, elevation in antioxidant enzyme activities, increases in the PCs and GSH levels in the aerial parts, and metal storage within vacuoles counteracted each other in the invasion mechanism of Z. ]abago.展开更多
基金Supported by the Tarbiat Moallem University,Iran
文摘Tailings of a Pb and Zn mine as a metal-contaminated area (Zone 1) with two pioneer plant species, Peganum harmala and Zygophyllum fabago, were investigated and compared with a non-contaminated area (Zone 2) in the vicinity. Total concentrations of Pb, Zn, and Cu in the soil of Zone 1 were 1 416, 2 217, and 426 mg kg-1, respectively, and all exceeded their ranges in the normal soils. The soil pH was in the neutral range and most of the physical and chemical characteristics of the soils from both zones were almost similar. The species Z. fabago accumulated higher Cu and Zn in its aerial part and roots than the normal plants. On the other hand, their concentrations did not reach the criteria that the species could be considered as a metal hyperaccumulator. The species P. harmala did not absorb metals in its roots; accordingly, the accumulation factor values of these metals were lower than 1. The contents of chlorophyll, biomass, malondialdehyde, and dityrosine in these two species did not vary significantly between the two zones studied. In Zone 1, leaf vacuoles of Z. fabago stored 35.6% and 43.2% of the total leaf Cu and Zn, respectively. However, in this species, the levels of phytochelatins (PCs) and glutathione (GSH) and antioxidant enzyme activities were significantly higher in Zone 1 than in Zone 2. In conclusion, metal exclusion in P. harmala and metal accumulation in Z. fabago were the basic strategies in the two studied pioneer species growing on the metal-contaminated zone. In response to metal stress, elevation in antioxidant enzyme activities, increases in the PCs and GSH levels in the aerial parts, and metal storage within vacuoles counteracted each other in the invasion mechanism of Z. ]abago.