Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil ...Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources.Phytoremediation,being more cost-effective and fewer side effects than physical and chemical approaches,has gained increasing popularity in both academic and practical circles.More than 400 plant species have been identified to have potential for soil and water remediation.Among them,Thlaspi,Brassica,Sedum alfredii H.,and Arabidopsis species have been mostly studied.It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come.This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.展开更多
Adsorption of Cr(Ⅵ) and p-chloroaniline on three typical soil colloids and pH influence were studied using batch equilibrium method. Both of Cr(Ⅵ) and p-chloroaniline adsorption on the colloids could be well describ...Adsorption of Cr(Ⅵ) and p-chloroaniline on three typical soil colloids and pH influence were studied using batch equilibrium method. Both of Cr(Ⅵ) and p-chloroaniline adsorption on the colloids could be well described by general adsorption simulation equations. The adsorption processes changed with media pH. When Cr(Ⅵ) and p-chloroaniline coexisted on soil colloids, their interactions could be observed in a certain pH range to be accompanied with Cr(Ⅵ) reduction, which clearly suggested that a surface catalytic reaction occurred in this system. Soil colloid acted as an efficient catalyst for the interaction of Cr(Ⅵ) and p-chloroaniline. The pH values at which no interaction was observed were 4.0, 4.5 and 5.0 for the colloids of indigotic black soil, yellow-brown soil and latosol, respectively. Capillary electrophoresis used to analyze p-chloroaniline provided a high separation efficiency and short separation time, and needed no more extensive pretreatment of samples.展开更多
Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. I...Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. In this study, NPS pollution load was simulated in urban planning, historic trends and ecological protection land use scenarios based on the Conversion of Land Use and its Effect at Small regional extent(CLUE-S) and Soil and Water Assessment Tool(SWAT) models applied to Hunhe-Taizi River Watershed, Liaoning Province, China. Total nitrogen(TN) and total phosphorus(TP) were chosen as NPS pollution indices. The results of models validation showed that CLUE-S and SWAT models were suitable in the study area. NPS pollution mainly came from dry farmland, paddy, rural and urban areas. The spatial distribution of TN and TP exhibited the same trend in 57 sub-catchments. The TN and TP had the highest NPS pollution load in the western and central plains, which concentrated the urban area and farm land. The NPS pollution load would increase in the urban planning and historic trends scenarios, and would be even higher in the urban planning scenario. However, the NPS pollution load decreased in the ecological protection scenario. The differences observed in the three scenarios indicated that land use had a degree of impact on NPS pollution, which showed that scientific and ecologically sound construction could effectively reduce the NPS pollution load in a watershed. This study provides a scientific method for conducting NPS pollution research at the watershed scale, a scientific basis for non-point source pollution control, and a reference for related policy making.展开更多
Because of the rapid development of industrial processes, increased urban pollution and agricultural chemicals applied in recent years, heavy metal(loid) pollution in soil has been very serious, and there is an urgent...Because of the rapid development of industrial processes, increased urban pollution and agricultural chemicals applied in recent years, heavy metal(loid) pollution in soil has been very serious, and there is an urgent need for fast and efficient removal of heavy metal(loid) pollution. Currently, environmental microorganisms are always used to perform biological alteration or improvement of soils and sewage. Using functional microorganisms that are resistant to toxic heavy metal(loid) ions for alteration and transformation of heavy metal(loid)s in ionic form is an effective measure for microbial remediation of heavy metal(loid)contaminated soil. This paper reviewed the microbial remediation mechanism of heavy metal(loid) contaminated soils, and the approaches for breeding bacteria those can be used for highly efficient removal of heavy metal(loid)s, as well as the application examples of microbial remediation and transformation of heavy metal(loid) contaminated soil, and finally described the future trends and further research work of heavy metal(loid) contaminated soils by microbial remediation.展开更多
基金Project supported by the Higher Education Commission,Government of Pakistan for the faculty training under the R & D Project"Strengthening Department of Soil Science and Soil and Water Conservation" at the University of Florida,USA,a grant from the St. Lucie River Water Initiative (SFWMD contract No. OT060162),USA,in partthe Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0536),China
文摘Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources.Phytoremediation,being more cost-effective and fewer side effects than physical and chemical approaches,has gained increasing popularity in both academic and practical circles.More than 400 plant species have been identified to have potential for soil and water remediation.Among them,Thlaspi,Brassica,Sedum alfredii H.,and Arabidopsis species have been mostly studied.It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come.This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.
文摘Adsorption of Cr(Ⅵ) and p-chloroaniline on three typical soil colloids and pH influence were studied using batch equilibrium method. Both of Cr(Ⅵ) and p-chloroaniline adsorption on the colloids could be well described by general adsorption simulation equations. The adsorption processes changed with media pH. When Cr(Ⅵ) and p-chloroaniline coexisted on soil colloids, their interactions could be observed in a certain pH range to be accompanied with Cr(Ⅵ) reduction, which clearly suggested that a surface catalytic reaction occurred in this system. Soil colloid acted as an efficient catalyst for the interaction of Cr(Ⅵ) and p-chloroaniline. The pH values at which no interaction was observed were 4.0, 4.5 and 5.0 for the colloids of indigotic black soil, yellow-brown soil and latosol, respectively. Capillary electrophoresis used to analyze p-chloroaniline provided a high separation efficiency and short separation time, and needed no more extensive pretreatment of samples.
基金Under the auspices of National Natural Science Foundation of China(No.41171155,40801069)National Science and Technology Major Project of China:Water Pollution Control and Governance(No.2012ZX07505-003)
文摘Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. In this study, NPS pollution load was simulated in urban planning, historic trends and ecological protection land use scenarios based on the Conversion of Land Use and its Effect at Small regional extent(CLUE-S) and Soil and Water Assessment Tool(SWAT) models applied to Hunhe-Taizi River Watershed, Liaoning Province, China. Total nitrogen(TN) and total phosphorus(TP) were chosen as NPS pollution indices. The results of models validation showed that CLUE-S and SWAT models were suitable in the study area. NPS pollution mainly came from dry farmland, paddy, rural and urban areas. The spatial distribution of TN and TP exhibited the same trend in 57 sub-catchments. The TN and TP had the highest NPS pollution load in the western and central plains, which concentrated the urban area and farm land. The NPS pollution load would increase in the urban planning and historic trends scenarios, and would be even higher in the urban planning scenario. However, the NPS pollution load decreased in the ecological protection scenario. The differences observed in the three scenarios indicated that land use had a degree of impact on NPS pollution, which showed that scientific and ecologically sound construction could effectively reduce the NPS pollution load in a watershed. This study provides a scientific method for conducting NPS pollution research at the watershed scale, a scientific basis for non-point source pollution control, and a reference for related policy making.
文摘Because of the rapid development of industrial processes, increased urban pollution and agricultural chemicals applied in recent years, heavy metal(loid) pollution in soil has been very serious, and there is an urgent need for fast and efficient removal of heavy metal(loid) pollution. Currently, environmental microorganisms are always used to perform biological alteration or improvement of soils and sewage. Using functional microorganisms that are resistant to toxic heavy metal(loid) ions for alteration and transformation of heavy metal(loid)s in ionic form is an effective measure for microbial remediation of heavy metal(loid)contaminated soil. This paper reviewed the microbial remediation mechanism of heavy metal(loid) contaminated soils, and the approaches for breeding bacteria those can be used for highly efficient removal of heavy metal(loid)s, as well as the application examples of microbial remediation and transformation of heavy metal(loid) contaminated soil, and finally described the future trends and further research work of heavy metal(loid) contaminated soils by microbial remediation.