[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contam...[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contaminated soil. [Method] The soil incubation experiment was conducted to study the effect of red mud on the pH values and electrical conductivity (EC), and the remediation efficiency of red mud on lead (Pb), zinc (Zn) and cadmium (Cd) in heavy metal contaminated soil. [Result] Red mud addition reduced the content of exchangeable Pb, Zn and Cd in the soil significantly. Compared with the control, when incubated for 30, 60 and 90 d with the red mud dosage of 4% (W/W), the exchangeable Pb content was decreased by 39.25%, 41.38% and 50.19%; exchangeable Zn content was decreased by 49.26%, 57.32% and 47.16%; and exchangeable Cd content was decreased by 19.53%, 24.06% and 25.70%, respectively. The application of red mud had significant impact on the share of Pb, Zn and Cd contents in five forms, and different amounts of red mud application all reduced the proportion of exchangeable Pb, Zn and Cd to the total Pb, Zn and Cd. In addition, the proportion of exchangeable Pb, Zn and Cd to total Pb, Zn and Cd decreased with the increasing amount of red mud addition. [Conclusion] The study provided references for reasonable application of red mud and reduction of heavy metal pollution in paddy soil.展开更多
Phytoremediation is an efficient and economic ecological technology. It includes phytostabilization, phytovolatilization, and plant absorption. In the research, status quo and progress of Phytostabilization and plant ...Phytoremediation is an efficient and economic ecological technology. It includes phytostabilization, phytovolatilization, and plant absorption. In the research, status quo and progress of Phytostabilization and plant absorption in soils polluted with heavy metals in metal mines were summarized, including the characteristics and status quo of phytoremediation and selection method of hyperaccumulator. In addition, further research was proposed as well.展开更多
Flax is an ideal crop for remedying soil contaminated by heavy metals. It has high tolerance to heavy metals and strong adsorption to heavy metals. Through properly using or adjusting external conditions such as regul...Flax is an ideal crop for remedying soil contaminated by heavy metals. It has high tolerance to heavy metals and strong adsorption to heavy metals. Through properly using or adjusting external conditions such as regulator, moisture, fertilizer, microorganisms, and pH value, it is able to improve ability of flax to absorb, trans- fer, and accumulate heavy metals. To improve the ability of flax in remediating heavy metal contaminated soil, it is recommended to strengthen cultivation of flax varieties and screening of germplasm resources, actively carry out studies on tech- nologies of fax remedying heavy metal contaminated soil, implement large-scale and mechanized planting of flax, and promote control of heavy metal contaminated soil.展开更多
To improve the conventional electrokinetic remediation of Pb-contaminated soil,the Pb-contaminated soil near a lead acid battery factory in the Pearl River Delta region of China was electrokinetically remedied with po...To improve the conventional electrokinetic remediation of Pb-contaminated soil,the Pb-contaminated soil near a lead acid battery factory in the Pearl River Delta region of China was electrokinetically remedied with polarity exchange technique.The variations in Pb removal efficiency and the soil p H value with the treatment time and the exchange polarity interval were determined.It is found that the removal efficiency of Pb reaches a maximum of 87.7% when the voltage gradient is 1 V/cm and the exchange polarity interval is 48 h.This value is far higher than that obtained with conventional electrokinetic remediation(61.8%).Additionally,the "focusing effect" which appears in the conventional electrokinetic remediation can be avoided,and thus additional chemicals are not needed for the polarity exchange technique.The mechanism of Pb electromigration behavior in soil during the treatment with the polarity exchange technique was described.展开更多
[Objective] The remediation effect of the plant to Cd-contaminated soil was studied. [Method] By taking simulation test and field test, the ryegrass (Lolium perenne L.) was planted, and the remediation effect of the...[Objective] The remediation effect of the plant to Cd-contaminated soil was studied. [Method] By taking simulation test and field test, the ryegrass (Lolium perenne L.) was planted, and the remediation effect of the plant to contaminated sites was studied. [Result] The ryegrass was planted in the eluotropic soil for 0-60 d, Cd content in the soil showed a rapid decreasing trend; after 60 d, the enrich- ment ability of the plant to Cd gradually weakened over time; after 75 d of phytore- mediation, the Cd content in the soil decreased greatly, and the remediation effi- ciency was 90.66%. [Conclusion] Ryegrass remediation technology had good reme- diation effect to Cd-contaminated soil.展开更多
[Objective] The research aimed to study the degradation of 2,4,6-trichlorophenol (TCP) in soil planted with alfalfa (Medicago sativa L.),as well as to provide references for the Chlorophenols phytoremediation tech...[Objective] The research aimed to study the degradation of 2,4,6-trichlorophenol (TCP) in soil planted with alfalfa (Medicago sativa L.),as well as to provide references for the Chlorophenols phytoremediation technology in the practical application.[Method] By the use of pot culture experiment in greenhouse,the phytoremediation effect of alfalfa on TCP-contaminated soil,the growth conditions of alfalfa,as well as the effect of TCP on the activity of soil polyphenol oxidase,dehydrogenase and catalase were studied.[Result] After the alfalfa was grown for 75 d,the TCP content in soil of three different concentrations treatments (low,middle and high) decreased dramatically within 15 d,and then the decreasing rate was gradually slow; on the 30^th d of cultivation,the fresh weight of treated alfalfa showed no significant difference with the control (P〈0.05),indicating that TCP in soil had inhibition effect on the growth of alfalfa; alfalfa could significantly enhance the activities of polyphenol oxidase,dehydrogenase and catalase,thus raising the degradation capability of soil plants and microorganisms on pollutants in soil.[Conclusion] There results indicated that alfalfa could enhance the degradation rate of organics in the contaminated soil and enhance soil enzyme activity,so the alfalfa could be used for the bioremediation of TCP contaminated soil.展开更多
Phytoremediation is becoming a cost-effective technology for the in-situ clean up of sites polluted with hydrophobic organic contaminants (HOCs). The major factors limiting phytoremediation are the mass transfer, ra...Phytoremediation is becoming a cost-effective technology for the in-situ clean up of sites polluted with hydrophobic organic contaminants (HOCs). The major factors limiting phytoremediation are the mass transfer, rate of plant uptake, and microbial biodegradation of HOCs. This article discusses the potential of surfactants to enhance desorption, plant uptake, and biodegradation of HOCs in the contaminated sites. Positive effects of surfactants on phytoremediation have been recently observed in greenhouse studies. The presence of some nonionic surfactants including polyoxyethylene sorbltan monooleate (Tween 80) and polyoxyethylene(23)dodecanol (Brij35) at relatively low concentrations resulted in significant positive effects on phytoremediation for pyrene-contaminated soil. However, the anionic surfactant (sodium dodecyl sulfate, SDS) and the cationic surfactant (cetyltrimethylammonium bromide, CTMAB) were not useful because of their phytotoxicity or low efficiency for surfactant-enhanced phytoremediation (SEPR). The mechanisms of SEPR for HOC-contaminated sites were evaluated by considering experimental observations. In view of concerns about the cost effectiveness and toxicity of surfactants to plants, more research is needed to enhance the use of SEPR technology.展开更多
Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficienc...Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficiencies are influenced by reaction time,water amount,and dosage of remediation agent.The optimal remediation conditions are as follows:6 h of reaction time,1 kg/kg of water addition amount,and 0.25 kg/kg of remediation agent dosage.After PAC addition,the remediation efficiencies of diethylenetriamine-pentaacetic acid (DTPA)-extractable Pb,Cd,Cu,and Zn reach 88.3%,85.1%,85.4%,and 73.7%,respectively;and those for PAS are 89.7%,88.7%,83.5%,and 72.6%,respectively.The main remediation mechanism of the polymeric aluminum salt may contribute to the ionization and hydrolysis of PAC and PAS.H + released from ionization of polymeric aluminum salt can cause the leaching of heavy metals,while the multinuclear complex produced from hydrolysis may result in the immobilization of heavy metals.For PAC,the immobilization of heavy metals is the main remediation process.For PAS,both leaching and immobilization are involved in the remediation process of heavy metals.展开更多
Kaolinite from a lead-zinc mining district,which was spiked with cadmium,has been treated by electrokinetics to investigate effects of treatment time and applied voltage gradient.The results showed that the increased ...Kaolinite from a lead-zinc mining district,which was spiked with cadmium,has been treated by electrokinetics to investigate effects of treatment time and applied voltage gradient.The results showed that the increased test duration had induced a higher removal rate of cadmium.Being treated for 7 days,cadmium was removed from kaolinite dramatically.It was also found that higher removal rate happened when a higher voltage gradient was applied and cadmium accumulated near the cathode because pH increased.Increase of pH near the cathode caused accumulation of cadmium.Moreover,it was observed that cation exchange membrane which was placed between kaolinite and cathode could make pH lower than the initial value and avoid the higher pH near the cathode.As a result,the high concentration accumulation of cadmium near the cathode was avoided.展开更多
Phosphate was found to have neither influence on Cd transformation nor effect on plant Cd uptake in three Cd-amended upland soils.However,on submerged red earth,high phosphate dressing inhibited the transformation of ...Phosphate was found to have neither influence on Cd transformation nor effect on plant Cd uptake in three Cd-amended upland soils.However,on submerged red earth,high phosphate dressing inhibited the transformation of Cd from exchangeable fraction to other lower-available ones.Cadmium uptake by rice plants increased simultaneously with increasing phosphate supply though plant resistance to Cd also increased at high phosphate level.Application of phosphate as an amendment for Cd-contaminated soil was therefore not recommended in view of the increasing influx of Cd into food chain especially on flooded soils.展开更多
A microscopic diffusion-reaction modei was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurfa...A microscopic diffusion-reaction modei was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurface. The sequential strategy was employed to obtain the numerical solution of the modei using finite difference method. A non-uniform grid of discretization points was emploved to increase the accuracy of the numerical solution by means of coordinate transformation. One-dimensional column tests were conducted to verify the modei. The column was packed with simulated soils that were spiked with 2-chlorophenol. Ozone gas passed through the column at a flow rate of 100ml·min-1. The residual 2-chlorophenol content at different depths of the column was determined at fixed time intervals. Compared the experimental data with the simulated values, it was found that the mathematical modei fitted data well during most time of the experiment.展开更多
A two-dimensional numerical model is developed to simulate the flow,transport and biodegradation of toluene during bioventing (BV) processes in the unsaturated zones.The simulation for a single well BV system is use...A two-dimensional numerical model is developed to simulate the flow,transport and biodegradation of toluene during bioventing (BV) processes in the unsaturated zones.The simulation for a single well BV system is used to illustrate the effect of air injection rate on remediation efficiency.The air is injected into the vadose zone to create a positive pressure.Simulation results show that air injection rate is a primary parameter governing the dispersal,redistribution and surface loss of contaminant.At injection rates of 81.504 m3·d-1 (Run 1) and 407.52 m3·d-1 (Run 2),the total removed mass of toluene is 169.14 kg and 170.59 kg respectively.Ratios of volatilization to bio-degradation in Run 1 and Run 2 are 0.57︰1 and 0.89︰1,respectively,indicating that lower air injection rate enhances the biodegradation efficiency greatly.Air injection rate should be optimized to meet oxygen demand and to minimize the operational cost.展开更多
Because of the rapid development of industrial processes, increased urban pollution and agricultural chemicals applied in recent years, heavy metal(loid) pollution in soil has been very serious, and there is an urgent...Because of the rapid development of industrial processes, increased urban pollution and agricultural chemicals applied in recent years, heavy metal(loid) pollution in soil has been very serious, and there is an urgent need for fast and efficient removal of heavy metal(loid) pollution. Currently, environmental microorganisms are always used to perform biological alteration or improvement of soils and sewage. Using functional microorganisms that are resistant to toxic heavy metal(loid) ions for alteration and transformation of heavy metal(loid)s in ionic form is an effective measure for microbial remediation of heavy metal(loid)contaminated soil. This paper reviewed the microbial remediation mechanism of heavy metal(loid) contaminated soils, and the approaches for breeding bacteria those can be used for highly efficient removal of heavy metal(loid)s, as well as the application examples of microbial remediation and transformation of heavy metal(loid) contaminated soil, and finally described the future trends and further research work of heavy metal(loid) contaminated soils by microbial remediation.展开更多
Phytoremediation is a relatively new approach in remediating ecosystems contaminated by ecotoxic pollutants such as herbicides or heavy metals and especially cadmium (Cd). Certain indicators of phytoremediation, as ...Phytoremediation is a relatively new approach in remediating ecosystems contaminated by ecotoxic pollutants such as herbicides or heavy metals and especially cadmium (Cd). Certain indicators of phytoremediation, as plant growth, tolerance to Cd, and uptake, transfer factor (TF) and percent removal of Cd, were studied for 11 crops and 8 weed species in soil with varying levels of Cd (0-240 mg Cd kg" soil) under controlled environment. Cadmium accumulated mainly in roots (51%-86%, depending on the species), while a 14%-49% was transferred to shoots (except for four species) the concentration being positively related to Cd level in soil. Highest concentration in the above ground plant part was measured in sugarbeets (41-101 mg Cd kg-1 DW) followed by Bromus sterilis (75), Eruca sativa (32-82), Cichorium intibus (35-80), and maize (60 mg Cd kgl). Based on the results it is concluded that sugarbeets, maize, C. intibus, B. sterilis, E. sativa, Apium graveolens, and Vicia sativa seem to have a potential in remediating Cd contaminated soils.展开更多
基金Supported by the National Natural Science Foundation of China(50874046)the National High-tech Research and Develop Program of China(863 Program)(2010AA065203)the Science and Technology Project of Education Bureau of Hunan Province,China(08A032)~~
文摘[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contaminated soil. [Method] The soil incubation experiment was conducted to study the effect of red mud on the pH values and electrical conductivity (EC), and the remediation efficiency of red mud on lead (Pb), zinc (Zn) and cadmium (Cd) in heavy metal contaminated soil. [Result] Red mud addition reduced the content of exchangeable Pb, Zn and Cd in the soil significantly. Compared with the control, when incubated for 30, 60 and 90 d with the red mud dosage of 4% (W/W), the exchangeable Pb content was decreased by 39.25%, 41.38% and 50.19%; exchangeable Zn content was decreased by 49.26%, 57.32% and 47.16%; and exchangeable Cd content was decreased by 19.53%, 24.06% and 25.70%, respectively. The application of red mud had significant impact on the share of Pb, Zn and Cd contents in five forms, and different amounts of red mud application all reduced the proportion of exchangeable Pb, Zn and Cd to the total Pb, Zn and Cd. In addition, the proportion of exchangeable Pb, Zn and Cd to total Pb, Zn and Cd decreased with the increasing amount of red mud addition. [Conclusion] The study provided references for reasonable application of red mud and reduction of heavy metal pollution in paddy soil.
文摘Phytoremediation is an efficient and economic ecological technology. It includes phytostabilization, phytovolatilization, and plant absorption. In the research, status quo and progress of Phytostabilization and plant absorption in soils polluted with heavy metals in metal mines were summarized, including the characteristics and status quo of phytoremediation and selection method of hyperaccumulator. In addition, further research was proposed as well.
基金Supported by The Agricultural Sciences and Technology Innovation Program(ASTIPIBFC06)China Agriculture Research System of Bast Fiber Crops(CARS-19-E14)~~
文摘Flax is an ideal crop for remedying soil contaminated by heavy metals. It has high tolerance to heavy metals and strong adsorption to heavy metals. Through properly using or adjusting external conditions such as regulator, moisture, fertilizer, microorganisms, and pH value, it is able to improve ability of flax to absorb, trans- fer, and accumulate heavy metals. To improve the ability of flax in remediating heavy metal contaminated soil, it is recommended to strengthen cultivation of flax varieties and screening of germplasm resources, actively carry out studies on tech- nologies of fax remedying heavy metal contaminated soil, implement large-scale and mechanized planting of flax, and promote control of heavy metal contaminated soil.
基金Project(21003054)supported by the National Natural Science Foundation of ChinaProject(2013CXZDA013)supported by the Scientific Research Foundation of the Education Department of Guangdong Province,China
文摘To improve the conventional electrokinetic remediation of Pb-contaminated soil,the Pb-contaminated soil near a lead acid battery factory in the Pearl River Delta region of China was electrokinetically remedied with polarity exchange technique.The variations in Pb removal efficiency and the soil p H value with the treatment time and the exchange polarity interval were determined.It is found that the removal efficiency of Pb reaches a maximum of 87.7% when the voltage gradient is 1 V/cm and the exchange polarity interval is 48 h.This value is far higher than that obtained with conventional electrokinetic remediation(61.8%).Additionally,the "focusing effect" which appears in the conventional electrokinetic remediation can be avoided,and thus additional chemicals are not needed for the polarity exchange technique.The mechanism of Pb electromigration behavior in soil during the treatment with the polarity exchange technique was described.
基金Supported by the Prospective Research Project of Industry-University-Research Cooperation in Jiangsu Province(BY2014037-21)~~
文摘[Objective] The remediation effect of the plant to Cd-contaminated soil was studied. [Method] By taking simulation test and field test, the ryegrass (Lolium perenne L.) was planted, and the remediation effect of the plant to contaminated sites was studied. [Result] The ryegrass was planted in the eluotropic soil for 0-60 d, Cd content in the soil showed a rapid decreasing trend; after 60 d, the enrich- ment ability of the plant to Cd gradually weakened over time; after 75 d of phytore- mediation, the Cd content in the soil decreased greatly, and the remediation effi- ciency was 90.66%. [Conclusion] Ryegrass remediation technology had good reme- diation effect to Cd-contaminated soil.
基金Supported by Nanjing Scientific Research Foundation of Nanjing Institute of Technology (Ke 07-30)Foundation for introduced talent of Nanjing Institute of Technology (Ke 2003)~~
文摘[Objective] The research aimed to study the degradation of 2,4,6-trichlorophenol (TCP) in soil planted with alfalfa (Medicago sativa L.),as well as to provide references for the Chlorophenols phytoremediation technology in the practical application.[Method] By the use of pot culture experiment in greenhouse,the phytoremediation effect of alfalfa on TCP-contaminated soil,the growth conditions of alfalfa,as well as the effect of TCP on the activity of soil polyphenol oxidase,dehydrogenase and catalase were studied.[Result] After the alfalfa was grown for 75 d,the TCP content in soil of three different concentrations treatments (low,middle and high) decreased dramatically within 15 d,and then the decreasing rate was gradually slow; on the 30^th d of cultivation,the fresh weight of treated alfalfa showed no significant difference with the control (P〈0.05),indicating that TCP in soil had inhibition effect on the growth of alfalfa; alfalfa could significantly enhance the activities of polyphenol oxidase,dehydrogenase and catalase,thus raising the degradation capability of soil plants and microorganisms on pollutants in soil.[Conclusion] There results indicated that alfalfa could enhance the degradation rate of organics in the contaminated soil and enhance soil enzyme activity,so the alfalfa could be used for the bioremediation of TCP contaminated soil.
基金the National Natural Science Foundation of China (No.20507009)the Program for New Century Excellent Talents in University (NCET) of the Ministry of Education of China,the Natural Science Foundation of Jiangsu Province for Outstanding Young Scientist (No.BK2006518)and the International Foundation for Science (No.C/3958-1).
文摘Phytoremediation is becoming a cost-effective technology for the in-situ clean up of sites polluted with hydrophobic organic contaminants (HOCs). The major factors limiting phytoremediation are the mass transfer, rate of plant uptake, and microbial biodegradation of HOCs. This article discusses the potential of surfactants to enhance desorption, plant uptake, and biodegradation of HOCs in the contaminated sites. Positive effects of surfactants on phytoremediation have been recently observed in greenhouse studies. The presence of some nonionic surfactants including polyoxyethylene sorbltan monooleate (Tween 80) and polyoxyethylene(23)dodecanol (Brij35) at relatively low concentrations resulted in significant positive effects on phytoremediation for pyrene-contaminated soil. However, the anionic surfactant (sodium dodecyl sulfate, SDS) and the cationic surfactant (cetyltrimethylammonium bromide, CTMAB) were not useful because of their phytotoxicity or low efficiency for surfactant-enhanced phytoremediation (SEPR). The mechanisms of SEPR for HOC-contaminated sites were evaluated by considering experimental observations. In view of concerns about the cost effectiveness and toxicity of surfactants to plants, more research is needed to enhance the use of SEPR technology.
基金Project(K1201010-61)supported by the Science and Technology Program of Changsha,ChinaProject(51074191)supported by the National Natural Science Foundation of ChinaProject(2012BAC09B04)supported by National Key Technology Research and Development Program,China
文摘Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficiencies are influenced by reaction time,water amount,and dosage of remediation agent.The optimal remediation conditions are as follows:6 h of reaction time,1 kg/kg of water addition amount,and 0.25 kg/kg of remediation agent dosage.After PAC addition,the remediation efficiencies of diethylenetriamine-pentaacetic acid (DTPA)-extractable Pb,Cd,Cu,and Zn reach 88.3%,85.1%,85.4%,and 73.7%,respectively;and those for PAS are 89.7%,88.7%,83.5%,and 72.6%,respectively.The main remediation mechanism of the polymeric aluminum salt may contribute to the ionization and hydrolysis of PAC and PAS.H + released from ionization of polymeric aluminum salt can cause the leaching of heavy metals,while the multinuclear complex produced from hydrolysis may result in the immobilization of heavy metals.For PAC,the immobilization of heavy metals is the main remediation process.For PAS,both leaching and immobilization are involved in the remediation process of heavy metals.
基金Sponsored by Excellent Younger Teacher Awards Project of University(Grant No.20010170)the Scientific Research Foundation of Harbin Institute of Technology(Grant No.HIT.2002.68).
文摘Kaolinite from a lead-zinc mining district,which was spiked with cadmium,has been treated by electrokinetics to investigate effects of treatment time and applied voltage gradient.The results showed that the increased test duration had induced a higher removal rate of cadmium.Being treated for 7 days,cadmium was removed from kaolinite dramatically.It was also found that higher removal rate happened when a higher voltage gradient was applied and cadmium accumulated near the cathode because pH increased.Increase of pH near the cathode caused accumulation of cadmium.Moreover,it was observed that cation exchange membrane which was placed between kaolinite and cathode could make pH lower than the initial value and avoid the higher pH near the cathode.As a result,the high concentration accumulation of cadmium near the cathode was avoided.
文摘Phosphate was found to have neither influence on Cd transformation nor effect on plant Cd uptake in three Cd-amended upland soils.However,on submerged red earth,high phosphate dressing inhibited the transformation of Cd from exchangeable fraction to other lower-available ones.Cadmium uptake by rice plants increased simultaneously with increasing phosphate supply though plant resistance to Cd also increased at high phosphate level.Application of phosphate as an amendment for Cd-contaminated soil was therefore not recommended in view of the increasing influx of Cd into food chain especially on flooded soils.
基金China Scholarship Council(No.97842039)National Natural Science Foundation of China(No.20107005)
文摘A microscopic diffusion-reaction modei was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurface. The sequential strategy was employed to obtain the numerical solution of the modei using finite difference method. A non-uniform grid of discretization points was emploved to increase the accuracy of the numerical solution by means of coordinate transformation. One-dimensional column tests were conducted to verify the modei. The column was packed with simulated soils that were spiked with 2-chlorophenol. Ozone gas passed through the column at a flow rate of 100ml·min-1. The residual 2-chlorophenol content at different depths of the column was determined at fixed time intervals. Compared the experimental data with the simulated values, it was found that the mathematical modei fitted data well during most time of the experiment.
基金Supported by the National High Technology Research and Development Program("863"Program)of China(2009AA063102,2007AA061202)
文摘A two-dimensional numerical model is developed to simulate the flow,transport and biodegradation of toluene during bioventing (BV) processes in the unsaturated zones.The simulation for a single well BV system is used to illustrate the effect of air injection rate on remediation efficiency.The air is injected into the vadose zone to create a positive pressure.Simulation results show that air injection rate is a primary parameter governing the dispersal,redistribution and surface loss of contaminant.At injection rates of 81.504 m3·d-1 (Run 1) and 407.52 m3·d-1 (Run 2),the total removed mass of toluene is 169.14 kg and 170.59 kg respectively.Ratios of volatilization to bio-degradation in Run 1 and Run 2 are 0.57︰1 and 0.89︰1,respectively,indicating that lower air injection rate enhances the biodegradation efficiency greatly.Air injection rate should be optimized to meet oxygen demand and to minimize the operational cost.
文摘Because of the rapid development of industrial processes, increased urban pollution and agricultural chemicals applied in recent years, heavy metal(loid) pollution in soil has been very serious, and there is an urgent need for fast and efficient removal of heavy metal(loid) pollution. Currently, environmental microorganisms are always used to perform biological alteration or improvement of soils and sewage. Using functional microorganisms that are resistant to toxic heavy metal(loid) ions for alteration and transformation of heavy metal(loid)s in ionic form is an effective measure for microbial remediation of heavy metal(loid)contaminated soil. This paper reviewed the microbial remediation mechanism of heavy metal(loid) contaminated soils, and the approaches for breeding bacteria those can be used for highly efficient removal of heavy metal(loid)s, as well as the application examples of microbial remediation and transformation of heavy metal(loid) contaminated soil, and finally described the future trends and further research work of heavy metal(loid) contaminated soils by microbial remediation.
文摘Phytoremediation is a relatively new approach in remediating ecosystems contaminated by ecotoxic pollutants such as herbicides or heavy metals and especially cadmium (Cd). Certain indicators of phytoremediation, as plant growth, tolerance to Cd, and uptake, transfer factor (TF) and percent removal of Cd, were studied for 11 crops and 8 weed species in soil with varying levels of Cd (0-240 mg Cd kg" soil) under controlled environment. Cadmium accumulated mainly in roots (51%-86%, depending on the species), while a 14%-49% was transferred to shoots (except for four species) the concentration being positively related to Cd level in soil. Highest concentration in the above ground plant part was measured in sugarbeets (41-101 mg Cd kg-1 DW) followed by Bromus sterilis (75), Eruca sativa (32-82), Cichorium intibus (35-80), and maize (60 mg Cd kgl). Based on the results it is concluded that sugarbeets, maize, C. intibus, B. sterilis, E. sativa, Apium graveolens, and Vicia sativa seem to have a potential in remediating Cd contaminated soils.