为研究厦门市冬季不同PM2.5污染情境与气象条件和气团轨迹路径特征的关系,结合PM2.5观测数据,使用AGAGE(Advanced Global Atmospheric Gases Experiment)统计方法识别2014—2018年冬季厦门市PM2.5观测值、基线值和污染值情境,通过气象...为研究厦门市冬季不同PM2.5污染情境与气象条件和气团轨迹路径特征的关系,结合PM2.5观测数据,使用AGAGE(Advanced Global Atmospheric Gases Experiment)统计方法识别2014—2018年冬季厦门市PM2.5观测值、基线值和污染值情境,通过气象数据统计和气团后向轨迹聚类对不同PM2.5污染情境下气象条件和气团轨迹路径特征进行探究.结果表明:①厦门市冬季不同PM2.5污染情境下,ρ(PM2.5)及PM2.5污染值情境时长占比均呈波动中下降的趋势,具体表现为冬季PM2.5观测值、污染值和基线值情境下,ρ(PM2.5)平均值分别从2014年的42.2、90.7、16.4μg/m3降至2018年的26.3、56.9、8.8μg/m3,冬季PM2.5污染值情境时长占比从2014年的10.2%降至2018年的3.0%.②冬季PM2.5污染值情境下气象要素呈低风速、低气压、高温度、高相对湿度的特征.③冬季到达厦门市的气团轨迹路径中,局地路径由于大气条件稳定易累积形成PM2.5污染;偏北路径和西北路径易从临近省份携带污染物输入导致PM2.5污染,属于重要的外源污染输入路径;沿海路径和偏西路径均属于清洁路径,但沿海路径易在福建省北部与偏北路径重合形成污染输入,加强了偏北路径的污染物输送能力.研究显示,近年来厦门市冬季PM2.5污染有明显减弱趋势,但不利的气象条件和外来污染输入仍会造成PM2.5污染的发生.展开更多
文摘为研究厦门市冬季不同PM2.5污染情境与气象条件和气团轨迹路径特征的关系,结合PM2.5观测数据,使用AGAGE(Advanced Global Atmospheric Gases Experiment)统计方法识别2014—2018年冬季厦门市PM2.5观测值、基线值和污染值情境,通过气象数据统计和气团后向轨迹聚类对不同PM2.5污染情境下气象条件和气团轨迹路径特征进行探究.结果表明:①厦门市冬季不同PM2.5污染情境下,ρ(PM2.5)及PM2.5污染值情境时长占比均呈波动中下降的趋势,具体表现为冬季PM2.5观测值、污染值和基线值情境下,ρ(PM2.5)平均值分别从2014年的42.2、90.7、16.4μg/m3降至2018年的26.3、56.9、8.8μg/m3,冬季PM2.5污染值情境时长占比从2014年的10.2%降至2018年的3.0%.②冬季PM2.5污染值情境下气象要素呈低风速、低气压、高温度、高相对湿度的特征.③冬季到达厦门市的气团轨迹路径中,局地路径由于大气条件稳定易累积形成PM2.5污染;偏北路径和西北路径易从临近省份携带污染物输入导致PM2.5污染,属于重要的外源污染输入路径;沿海路径和偏西路径均属于清洁路径,但沿海路径易在福建省北部与偏北路径重合形成污染输入,加强了偏北路径的污染物输送能力.研究显示,近年来厦门市冬季PM2.5污染有明显减弱趋势,但不利的气象条件和外来污染输入仍会造成PM2.5污染的发生.