Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]p...Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.展开更多
A combined process of catalytic ozonation in the presence of a novel heterogeneous catalyst and biological activated carbon was investigated for the removal of priority control organic pollutants, the reduction of gen...A combined process of catalytic ozonation in the presence of a novel heterogeneous catalyst and biological activated carbon was investigated for the removal of priority control organic pollutants, the reduction of genotoxicity, and the improvement of biodegradable dissolved organic carbon (BDOC). Results confirm that the catalytic ozonation has higher effectiveness for the removal of refractory harmful organic pollutants, the reduction of genotoxicity and the increase of bio-degradability of organics than ozonation alone, which results in lower pollution load for subsequent biological activated carbon process, and then leads to less organic pollutants penetrating biological activated carbon. The novel catalytic ozonation with this combined process exhibits excellent performance to guarantee the safety of drinking water.展开更多
Natural clay minerals can play an important role in crude remediation of wastewater polluted with the heavy metals (HMs) Cu, Zn and Ni. The presence and timing of ddition of natural dissolved organic matter (DOM) ...Natural clay minerals can play an important role in crude remediation of wastewater polluted with the heavy metals (HMs) Cu, Zn and Ni. The presence and timing of ddition of natural dissolved organic matter (DOM) have a significant effect on the HM removal by clay mineral sorbents. However, the influence of the presence of DOM on the remediation of the used clay mineral sorbents once saturated with HMs is largely unknown. To resolve this, clay mineral-rich soil column of varying composition, loaded (i) with Cu, Zn and Ni only, (ii) first with DOM followed by Cu, Zn and Ni, or (iii) with DOM, Cu, Zn and Ni simultaneously, was used in a set of desorption experiments. The soil columns were leached with 0.001 mol L-1 CaCI2 dissolved in water as control eluent and 0.001 tool L-1 CaC12 dissolved in DOM as treatment eluent. During the preceding loading phase of the sorbent, the timing of DOM addition (sequential or concurrent with HMs) was found to have a significant influence on the subsequent removal of the HMs. In particular when the column was loaded with DOM and HMs simultaneously, largely irreversible co-precipitation took place. Our results indicate that the regeneration potential of clay mineral sorbents in wastewater treatment will be significantly reduced when the treated water is rich in DOM. In contrast, in manured agricultural fields (where HMs enter together with DOM), HM mobility will be lower than expected from interaction dynamics of HMs and clay minerals.展开更多
文摘Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.
基金Sponsored by the National High Technology Research and Development Program (863) of China(Grant No. 2006AA06Z306)the National Natural Science Foundation of China(Grant No.50578051)
文摘A combined process of catalytic ozonation in the presence of a novel heterogeneous catalyst and biological activated carbon was investigated for the removal of priority control organic pollutants, the reduction of genotoxicity, and the improvement of biodegradable dissolved organic carbon (BDOC). Results confirm that the catalytic ozonation has higher effectiveness for the removal of refractory harmful organic pollutants, the reduction of genotoxicity and the increase of bio-degradability of organics than ozonation alone, which results in lower pollution load for subsequent biological activated carbon process, and then leads to less organic pollutants penetrating biological activated carbon. The novel catalytic ozonation with this combined process exhibits excellent performance to guarantee the safety of drinking water.
基金supported by a scholarship from the Faculty of Science, University of Amsterdam, The Netherlands
文摘Natural clay minerals can play an important role in crude remediation of wastewater polluted with the heavy metals (HMs) Cu, Zn and Ni. The presence and timing of ddition of natural dissolved organic matter (DOM) have a significant effect on the HM removal by clay mineral sorbents. However, the influence of the presence of DOM on the remediation of the used clay mineral sorbents once saturated with HMs is largely unknown. To resolve this, clay mineral-rich soil column of varying composition, loaded (i) with Cu, Zn and Ni only, (ii) first with DOM followed by Cu, Zn and Ni, or (iii) with DOM, Cu, Zn and Ni simultaneously, was used in a set of desorption experiments. The soil columns were leached with 0.001 mol L-1 CaCI2 dissolved in water as control eluent and 0.001 tool L-1 CaC12 dissolved in DOM as treatment eluent. During the preceding loading phase of the sorbent, the timing of DOM addition (sequential or concurrent with HMs) was found to have a significant influence on the subsequent removal of the HMs. In particular when the column was loaded with DOM and HMs simultaneously, largely irreversible co-precipitation took place. Our results indicate that the regeneration potential of clay mineral sorbents in wastewater treatment will be significantly reduced when the treated water is rich in DOM. In contrast, in manured agricultural fields (where HMs enter together with DOM), HM mobility will be lower than expected from interaction dynamics of HMs and clay minerals.