In a previous greenhouse experiment, we showed that there was an interaction between Cu and Zn, which affected growth and metal uptake by young barley plants grown on soil to which Cd, Cu, Pb, and Zn had been added. W...In a previous greenhouse experiment, we showed that there was an interaction between Cu and Zn, which affected growth and metal uptake by young barley plants grown on soil to which Cd, Cu, Pb, and Zn had been added. We suggested that the underlying mechanism was the control of the amount of plant-available Zn by competitive adsorption between Cu and Zn. In order to test this hypothesis, the adsorption of Zn alone, and in the presence of added Cd, Cu and Pb, has been measured using the same soil. Following adsorption, the extractability of the Zn in CaCl2 solution was measured. The adsorption isotherms showed that of the added metals only Cu had a large effect on Zn adsorption. The effect of Cu was to reduce Zn adsorption and to increase the amount of CaCl2-extractable (i.e. plant-available) Zn, in agreement with the conclusions from the greenhouse experiment. The magnitude of the effect of Cu on plant-available Zn was similar in both experiments.展开更多
Under the condition of different precipitation intensities, different gradients, different land-use types and different vegetation coverage, the soil erosion and transference of element (or pollutant) are studied by s...Under the condition of different precipitation intensities, different gradients, different land-use types and different vegetation coverage, the soil erosion and transference of element (or pollutant) are studied by simulating and analyzing the surface run-off of experimental plots in the catchment area of Songhua Lake, with an area of about 43 370.8km2. And the influencing factors that produce the spatial difference are analyzed and assessed. It is put forward that the irrational land utilization is the reason of soil erosion and pollutant run-off. The gradient of farmland, the growing season of vegetation and the vegetation coverage are chiefly restricting factors that lead to the soil erosion and pollutant run-off. This study can provide the fundamental data for comprehensive planning and harnessing of the non-point source pollution in the valley.展开更多
Of the factors affecting migration and bioavailability of toxic metals in heavy metal contaminated soil, DOC (dissolved organic carbon) provides binding sites for metal cations and reduces the fixation and adsorptio...Of the factors affecting migration and bioavailability of toxic metals in heavy metal contaminated soil, DOC (dissolved organic carbon) provides binding sites for metal cations and reduces the fixation and adsorption of heavy metals by soil solid phase. Elevation of DOC level due to the direct incorporation of crop residues may lead to enhanced accumulation of toxic metals in crop body grown in polluted farmland. In this study, an incubation experiment and a pot experiment were conducted respectively to investigate the effects of wheat straw incorporation on DOC level, cadmium availability, and Cd accumulation in rice plant, and to establish the relation between Cd solubility and DOC level. A Cd-contaminated rice soil was used and incorporated with different rates (0%, 0.5% and 1%) of wheat straw in both experiments. Results showed that the change pattern of Cd in soil solution was very similar to that of DOC level. Wheat straw addition significantly elevated Cd and DOC level in soil solution while NH4NO3-extrated Cd was not affected. There existed a close linear correlation between soluble Cd and DOC level. Enhanced Cd accumulation in rice plant, grown in a Cd contaminated soil, induced by wheat straw incorporation was observed in this study.展开更多
Polymer exchange membrane fuel cells (PEMFC) are objects of the current engineering technology and these are versatile generators for electrical energy. There are various kinds from them, but all of them are going o...Polymer exchange membrane fuel cells (PEMFC) are objects of the current engineering technology and these are versatile generators for electrical energy. There are various kinds from them, but all of them are going on work at highest temperature. There isn't a PEMFC which can run at room temperature, like 20 ℃. In this study there is a aim for constructing such one for alternative fuels utilisation. PS and many electroconducting polymer formulations were proved by different researchers for PEM benefications, but here PS was synthesized without containing metalic contaminants and after converted to the PEM membrane.展开更多
An optimal design of wastewater reuse for a University is concerned in this paper. The raw water and the capacity of wastewater reuse were determined according to the wastewater characteristic of a university; the tre...An optimal design of wastewater reuse for a University is concerned in this paper. The raw water and the capacity of wastewater reuse were determined according to the wastewater characteristic of a university; the treatment process was chosen by building a cost-benefit model; and the modeling test was performed about the operation effect of the proposed project and the recommended water quality of reclaimed water. It is estimated that 3.4×10^5 m^3/a tap water and 6.1×10^5 Yuan/a will be saved if the project was put into operation and the proposed project will reduce the total quantity of pollutant efficiently and bring lots of social and economic benefits.展开更多
Pollutant dynamics and bioavailability greatly differ in soil and aquatic systems. Therefore, specific approaches and models are needed to assess the impact of soil contamination to terrestrial ecosystems. Earthworms ...Pollutant dynamics and bioavailability greatly differ in soil and aquatic systems. Therefore, specific approaches and models are needed to assess the impact of soil contamination to terrestrial ecosystems. Earthworms among other soil invertebrates have received more attention because of their ecological importance. They represent a dominant part of the soil biomass and are soil engineers regulating important soil processes, notably fertilization. The release in soils of pollutants known for their persistence and/or their toxicity is a concern. Exposure of terrestrial species to pollutants that may alter genomic function has become an increasing topic of research in the last decade. Indeed, genome disturbances due to genetic and epigenetic mechanisms may impair growth, as well as reproduction and population dynamics in the long term. Despite their importance in gene expres- sion, epigenetic mechanisms are not yet understood in soil invertebrates. Until now, pollutant-induced changes in genome expression in natural biota are still being studied through structural alteration of DNA. The first biomarker relating to genotoxicant exposure in earthworms from multi-contaminated soils reported is DNA adducts measurements. It has been replaced by DNA breakage measured by the Comet assay, now more commonly used. Functional genomic changes are now being explored owing to molecular "omic" technologies. Approaches, objectives and results are overviewed herein. The focus is on studies dealing with genotoxicity and populational effects established from environmentally-relevant experiments and in situ studies [Current Zoology 60 (2): 255-272, 2014].展开更多
The method to remove bioavailable amounts of heavy metals from a contaminated soil by using plants is defined as bioavailable contaminant stripping (BCS) and could safely be applied if the soil's long-term ability ...The method to remove bioavailable amounts of heavy metals from a contaminated soil by using plants is defined as bioavailable contaminant stripping (BCS) and could safely be applied if the soil's long-term ability to replenish the bioavuilable pool is known. The aim of this study was to evaluate the ability of three common plant species selected, Brassica juncea, Poa annua, and Helianthus annus, to remove bioavailable amounts of mercury (Hg) from a contaminated industrial soil containing 15.1 mg kg-1 Hg. Trials were carried out under greenhouse conditions using pots (mesocosms). According to the precautionary principle, we modified the BCS remediation approach by adding a new step, in which mercury bioavailability was increased by the addition of a strong mobilizing agent, ammonium thiosulphate, (NH4)28203, to obtain an estimate of the likely long-term bioavailable Hg pool. The modified BCS remediation approach was called enhanced bioavailable contaminant stripping (EBCS). After one growth cycle, nearly all the bioavailable mercury (95.7%) was removed and the metal remaining in the soil was considered inert since it was neither extractable by (NH4)2S2O3 nor taken up by plants during a second growth cycle. The results demonstrated that EBCS appeared promising since it removed the most dangerous metal forms while substantially shortening the cleanup time.展开更多
Extensive worldwide use of oxytetracycline (OTC), a member of the tetracyclines, has resulted in its accumulation in soils, posing a potential risk to food production and safety. A pair of OTC-sensitive (Heyou 1) ...Extensive worldwide use of oxytetracycline (OTC), a member of the tetracyclines, has resulted in its accumulation in soils, posing a potential risk to food production and safety. A pair of OTC-sensitive (Heyou 1) and OTC-tolerant (Yannong 21) wheat (Tritieum aestivum L.) cultivars was compared hydroponically at 0.01, 0.02, 0.04, and 0.08 mmol L-10TC in terms of wheat growth and photosynthesis. Biomass and shoot length decreased significantly with the addition of OTC, with the decreases in dry biomass and shoot length being 5.61%-13.75% and 3.33%-8.57% larger, respectively, for Heyou 1 than Yannong 21. Photosynthesis of Heyou 1 was suppressed by OTC as indicated by the significant decreases in photosynthetic rate (PN), transpiration rate (TR), and stomatal conductance (GS) and the significant increase in intercellular CO2 concentrations (CI), at all OTC levels. Stomatal limitation (LS) and water use eftlciencies (WUE) of Heyou i also increased significantly, but not at 0.08 mmol L-10TC. However, photosynthesis of Yannong 21 was suppressed by OTC only at high OTC levels from 0.02 to 0.08 mmol L-1 as indicated by the decreases in PN, GS, TR, and LS; at 0.01 mmol L-10TC, PN, CI, GS, and TR significantly increased. It was noted that WUE of Yannong 21 was not affected by OTC addition. The results from this hydroponic test suggested that OTC had a potential risk to crop growth through inhibition of photosynthesis, requiring further confirmation with soil tests.展开更多
Urban afforestation is an important strategy for promoting sustainable urban development.In cities where large new green spaces are not available,the planting of curbside trees is deemed to be an important afforestati...Urban afforestation is an important strategy for promoting sustainable urban development.In cities where large new green spaces are not available,the planting of curbside trees is deemed to be an important afforestation strategy.However,variations in the ecosystem services provided by street tree assemblages across socioeconomic gradients have been unexplored.We examined such variations in ecosystem services provided by street tree assemblages along an urban–suburban continuum.Our findings were as follows.(i)Not all ecosystem services showed increasing trends along the urban–suburban continuum.Some ecosystem services at the street tree assemblage level,such as air purification and rainfall interception were prominent in areas of high urbanization intensity.(ii)Diverse ecosystem service trends were found in relation to differential characteristics of street trees assemblages.Structural properties of street tree assemblages,such as tree density and age structure,are likely key factors influencing variations.(iii)Although street tree density could partially compensate for the loss of large old trees,the protection of such trees is important because of their close associations with key ecosystem services,such as total carbon storage.To maximize the value of street trees in promoting urban sustainable development,trade-offs among multiple ecosystem services should be integrated within the overall planning process and adjustments of planting regimes.展开更多
文摘In a previous greenhouse experiment, we showed that there was an interaction between Cu and Zn, which affected growth and metal uptake by young barley plants grown on soil to which Cd, Cu, Pb, and Zn had been added. We suggested that the underlying mechanism was the control of the amount of plant-available Zn by competitive adsorption between Cu and Zn. In order to test this hypothesis, the adsorption of Zn alone, and in the presence of added Cd, Cu and Pb, has been measured using the same soil. Following adsorption, the extractability of the Zn in CaCl2 solution was measured. The adsorption isotherms showed that of the added metals only Cu had a large effect on Zn adsorption. The effect of Cu was to reduce Zn adsorption and to increase the amount of CaCl2-extractable (i.e. plant-available) Zn, in agreement with the conclusions from the greenhouse experiment. The magnitude of the effect of Cu on plant-available Zn was similar in both experiments.
文摘Under the condition of different precipitation intensities, different gradients, different land-use types and different vegetation coverage, the soil erosion and transference of element (or pollutant) are studied by simulating and analyzing the surface run-off of experimental plots in the catchment area of Songhua Lake, with an area of about 43 370.8km2. And the influencing factors that produce the spatial difference are analyzed and assessed. It is put forward that the irrational land utilization is the reason of soil erosion and pollutant run-off. The gradient of farmland, the growing season of vegetation and the vegetation coverage are chiefly restricting factors that lead to the soil erosion and pollutant run-off. This study can provide the fundamental data for comprehensive planning and harnessing of the non-point source pollution in the valley.
文摘Of the factors affecting migration and bioavailability of toxic metals in heavy metal contaminated soil, DOC (dissolved organic carbon) provides binding sites for metal cations and reduces the fixation and adsorption of heavy metals by soil solid phase. Elevation of DOC level due to the direct incorporation of crop residues may lead to enhanced accumulation of toxic metals in crop body grown in polluted farmland. In this study, an incubation experiment and a pot experiment were conducted respectively to investigate the effects of wheat straw incorporation on DOC level, cadmium availability, and Cd accumulation in rice plant, and to establish the relation between Cd solubility and DOC level. A Cd-contaminated rice soil was used and incorporated with different rates (0%, 0.5% and 1%) of wheat straw in both experiments. Results showed that the change pattern of Cd in soil solution was very similar to that of DOC level. Wheat straw addition significantly elevated Cd and DOC level in soil solution while NH4NO3-extrated Cd was not affected. There existed a close linear correlation between soluble Cd and DOC level. Enhanced Cd accumulation in rice plant, grown in a Cd contaminated soil, induced by wheat straw incorporation was observed in this study.
文摘Polymer exchange membrane fuel cells (PEMFC) are objects of the current engineering technology and these are versatile generators for electrical energy. There are various kinds from them, but all of them are going on work at highest temperature. There isn't a PEMFC which can run at room temperature, like 20 ℃. In this study there is a aim for constructing such one for alternative fuels utilisation. PS and many electroconducting polymer formulations were proved by different researchers for PEM benefications, but here PS was synthesized without containing metalic contaminants and after converted to the PEM membrane.
文摘An optimal design of wastewater reuse for a University is concerned in this paper. The raw water and the capacity of wastewater reuse were determined according to the wastewater characteristic of a university; the treatment process was chosen by building a cost-benefit model; and the modeling test was performed about the operation effect of the proposed project and the recommended water quality of reclaimed water. It is estimated that 3.4×10^5 m^3/a tap water and 6.1×10^5 Yuan/a will be saved if the project was put into operation and the proposed project will reduce the total quantity of pollutant efficiently and bring lots of social and economic benefits.
文摘Pollutant dynamics and bioavailability greatly differ in soil and aquatic systems. Therefore, specific approaches and models are needed to assess the impact of soil contamination to terrestrial ecosystems. Earthworms among other soil invertebrates have received more attention because of their ecological importance. They represent a dominant part of the soil biomass and are soil engineers regulating important soil processes, notably fertilization. The release in soils of pollutants known for their persistence and/or their toxicity is a concern. Exposure of terrestrial species to pollutants that may alter genomic function has become an increasing topic of research in the last decade. Indeed, genome disturbances due to genetic and epigenetic mechanisms may impair growth, as well as reproduction and population dynamics in the long term. Despite their importance in gene expres- sion, epigenetic mechanisms are not yet understood in soil invertebrates. Until now, pollutant-induced changes in genome expression in natural biota are still being studied through structural alteration of DNA. The first biomarker relating to genotoxicant exposure in earthworms from multi-contaminated soils reported is DNA adducts measurements. It has been replaced by DNA breakage measured by the Comet assay, now more commonly used. Functional genomic changes are now being explored owing to molecular "omic" technologies. Approaches, objectives and results are overviewed herein. The focus is on studies dealing with genotoxicity and populational effects established from environmentally-relevant experiments and in situ studies [Current Zoology 60 (2): 255-272, 2014].
基金Supported by the National Council of Research (CNR), Italy
文摘The method to remove bioavailable amounts of heavy metals from a contaminated soil by using plants is defined as bioavailable contaminant stripping (BCS) and could safely be applied if the soil's long-term ability to replenish the bioavuilable pool is known. The aim of this study was to evaluate the ability of three common plant species selected, Brassica juncea, Poa annua, and Helianthus annus, to remove bioavailable amounts of mercury (Hg) from a contaminated industrial soil containing 15.1 mg kg-1 Hg. Trials were carried out under greenhouse conditions using pots (mesocosms). According to the precautionary principle, we modified the BCS remediation approach by adding a new step, in which mercury bioavailability was increased by the addition of a strong mobilizing agent, ammonium thiosulphate, (NH4)28203, to obtain an estimate of the likely long-term bioavailable Hg pool. The modified BCS remediation approach was called enhanced bioavailable contaminant stripping (EBCS). After one growth cycle, nearly all the bioavailable mercury (95.7%) was removed and the metal remaining in the soil was considered inert since it was neither extractable by (NH4)2S2O3 nor taken up by plants during a second growth cycle. The results demonstrated that EBCS appeared promising since it removed the most dangerous metal forms while substantially shortening the cleanup time.
基金Supported by the National Natural Science Foundation of China (No. 40701163)the International Foundation for Science,Stockholm,Sweden+2 种基金the Organization for the Prohibition of Chemical Weapons,The Hague,The Netherlands (No. C/4076)the Natural Science Foundation of Beijing,China (No. 6092019)the National Basic Research Program (973 Program) of China (No. 2007CB109305)
文摘Extensive worldwide use of oxytetracycline (OTC), a member of the tetracyclines, has resulted in its accumulation in soils, posing a potential risk to food production and safety. A pair of OTC-sensitive (Heyou 1) and OTC-tolerant (Yannong 21) wheat (Tritieum aestivum L.) cultivars was compared hydroponically at 0.01, 0.02, 0.04, and 0.08 mmol L-10TC in terms of wheat growth and photosynthesis. Biomass and shoot length decreased significantly with the addition of OTC, with the decreases in dry biomass and shoot length being 5.61%-13.75% and 3.33%-8.57% larger, respectively, for Heyou 1 than Yannong 21. Photosynthesis of Heyou 1 was suppressed by OTC as indicated by the significant decreases in photosynthetic rate (PN), transpiration rate (TR), and stomatal conductance (GS) and the significant increase in intercellular CO2 concentrations (CI), at all OTC levels. Stomatal limitation (LS) and water use eftlciencies (WUE) of Heyou i also increased significantly, but not at 0.08 mmol L-10TC. However, photosynthesis of Yannong 21 was suppressed by OTC only at high OTC levels from 0.02 to 0.08 mmol L-1 as indicated by the decreases in PN, GS, TR, and LS; at 0.01 mmol L-10TC, PN, CI, GS, and TR significantly increased. It was noted that WUE of Yannong 21 was not affected by OTC addition. The results from this hydroponic test suggested that OTC had a potential risk to crop growth through inhibition of photosynthesis, requiring further confirmation with soil tests.
基金Funding for this study was provided by the National Natural Sciences Foundation of China(32130068,32171665).
文摘Urban afforestation is an important strategy for promoting sustainable urban development.In cities where large new green spaces are not available,the planting of curbside trees is deemed to be an important afforestation strategy.However,variations in the ecosystem services provided by street tree assemblages across socioeconomic gradients have been unexplored.We examined such variations in ecosystem services provided by street tree assemblages along an urban–suburban continuum.Our findings were as follows.(i)Not all ecosystem services showed increasing trends along the urban–suburban continuum.Some ecosystem services at the street tree assemblage level,such as air purification and rainfall interception were prominent in areas of high urbanization intensity.(ii)Diverse ecosystem service trends were found in relation to differential characteristics of street trees assemblages.Structural properties of street tree assemblages,such as tree density and age structure,are likely key factors influencing variations.(iii)Although street tree density could partially compensate for the loss of large old trees,the protection of such trees is important because of their close associations with key ecosystem services,such as total carbon storage.To maximize the value of street trees in promoting urban sustainable development,trade-offs among multiple ecosystem services should be integrated within the overall planning process and adjustments of planting regimes.