Adverse effects on the environment and high persistence in the microbial degradation and environmental fate of polycyclic aromatic hydrocarbons (PAHs) are motivating interest. Many soil microorganisms can degrade PAHs...Adverse effects on the environment and high persistence in the microbial degradation and environmental fate of polycyclic aromatic hydrocarbons (PAHs) are motivating interest. Many soil microorganisms can degrade PAHs and use various metabolic pathways to do so. However, both the physio-chemical characteristics of compounds as well as the physical, chemical, and biological properties of soils can drastically influence the degradation capacity of naturally occurring microorganisms for field bioremediation. Modern biological techniques have been widely used to promote the efficiency of microbial PAH-degradation and make the biodegradation metabolic pathways more clear. In this review microbial degradation of PAHs in soil is discussed, with emphasis placed on the main degradation pathways and the environmental factors affecting biodegradation.展开更多
The biodegradation of di-n-butyl phthalate (DBP) using immobilized microbial cells was carded out in an internal airlift loop reactor with ceramic honeycomb supports. A strain that is capable of degrading DBP was is...The biodegradation of di-n-butyl phthalate (DBP) using immobilized microbial cells was carded out in an internal airlift loop reactor with ceramic honeycomb supports. A strain that is capable of degrading DBP was isolated from the activated sludge and identified as Bacillus sp. using 16S rDNA sequential analysis. Bacillus sp. could be rapidly attached onto the ceramic honeycomb supports. The immobilized cells could effectively degrade DBP in batch and continuous experiments. When the influent concentration of DBP was 50mg·L^-1, the effluent DBP reached less than lmg.L i with 6h hydraulic retention time (HRT) in continuous experiment. The immobilized microbial cells could grow and accumulate through the biodegradation of DBP, and the rate of degradation is accordingly increased. The possible pathway of DBP biodegradation using immobilized cells was tentatively proposed.展开更多
An environmental capacity model for the petroleum hydrocarbon pollutions (PHs) in Jiaozhou Bay is constructed based on field surveys, mesocosm, and parallel laboratory experiments. Simulated results of PHs seasonal ...An environmental capacity model for the petroleum hydrocarbon pollutions (PHs) in Jiaozhou Bay is constructed based on field surveys, mesocosm, and parallel laboratory experiments. Simulated results of PHs seasonal successions in 2003 match the field surveys of Jiaozhou Bay resaonably well with a highest value in July. The Monte Carlo analysis confirms that the variation of PHs concentration significantly correlates with the river input. The water body in the bay is reasonably subjected to self-purification processes, such as volatilization to the atmosphere, biodegradation by microorganism, and transport to the Yellow Sea by water exchange. The environmental capacity of PHs in Jiaozhou Bay is 1500 tons per year IF the seawater quality criterion (Grade Ⅰ/Ⅱ, 0.05 mgLl) in the region is to be satisfied. The contribution to self-purification by volatilization, biodegradation, and transport to the Yellow Sea accounts for 48%, 28%, and 23%, respectively, which make these three processes the main ways of PHs purification in Jiaozhou Bay.展开更多
The intensity of Magnetic field by 200, 300 and 400 gaos were selective to study their impacts on bacteria Bacillus, Pseudomonas and yeasts Candida dubliniensis, Candida glabrata, lssatchenkia orientalis and Rhodotoru...The intensity of Magnetic field by 200, 300 and 400 gaos were selective to study their impacts on bacteria Bacillus, Pseudomonas and yeasts Candida dubliniensis, Candida glabrata, lssatchenkia orientalis and Rhodotorula mucilaginosa growth and to reduce organic pollutants in wastewater by COD, TOC, TN and TP in concentrations of 180, 75, 52 and 84 ppm in pH 7.6 and treatment periods of 2, 4, 6 and 18 h in batch system. Results showed that magnetic field 300 gaos had higher ability to increase bacterial and yeasts growth by 400-600% in 18 h and reduced COD, TOC, TN and TP by 88, 85, 90 and 98.5% in same period treatment. While, the intensity of magnetic field 200 and 400 gaos have no effect on microorganisms growth and reducing organic pollutants. This study is first record for showing and explaining the positive effective of magnetic field on microorganisms growth.展开更多
Bioremediation of petroleum hydrocarbons contaminated/polluted soils has been recognized as an efficient, economic, versatile and environmentally good treatment. This method is limited by the microorganisms activity i...Bioremediation of petroleum hydrocarbons contaminated/polluted soils has been recognized as an efficient, economic, versatile and environmentally good treatment. This method is limited by the microorganisms activity in degrading the spills hydrocarbons. Low solubility of the hydrocarbons involves low bioavailability to microorganisms. The main objective of this research is to increase biodegradation of petroleum hydrocarbons by treating the crude oil polluted soil with the natural biodegradable product and bacterial inoculum. Biodegradation was quantified by total petroleum hydrocarbons (TPH) analyses. The paper presents data obtained in biodegradation process of an artificial polluted soil with 5% and 10% crude oil, treated with a natural biodegradable product and bacterial inoculum during two years of experiment. Biodegradation process takes time to rehabilitate and reuse of the soil in agricultural scopes.展开更多
Chlorobenzenes (CBs) are a group of organic pollutants that pose a high environmental risk due to their toxicity, persistence and possible transfer in the food chain. Available data in literature show that CBs axe d...Chlorobenzenes (CBs) are a group of organic pollutants that pose a high environmental risk due to their toxicity, persistence and possible transfer in the food chain. Available data in literature show that CBs axe detected in different environmental compartments such as soil, water, air and sediment. The widespread presence of CBs in the environment is related to their former extensive use in agriculture and industry. Some CBs are ranked in the list of priority pollutants by the Stockholm Convention, and their reduction or elimination from the environment is therefore of high importance. Environmental risk assessment of CBs requires knowledge on the role and importance of the main environmental fate processes, especially in soil. Furthermore, development of remediation strategies for reduction or elimination of CBs from the environment is related to the enhancement of fate processes that increase their dissipation in various environmental compartments. The main objectives of the current review were to present up-to-date data on fate processes of CBs in the soil environment and to explore possible remediation strategies for soils contaminated with CBs. Dechlorination of highly-chlorinated benzenes is the main degradation pathway under anaerobic conditions, leading to the formation of lower-chlorinated benzenes. Biodegradation of lower-chlorinated benzenes is well documented, especially by strains of adapted or specialized microorganisms. Development of techniques that combine dechlorination of highly-chlorinated benzehes with biodegradation or biomineralization of lower-chlorinated benzenes can result in useful tools for remediation of soils contaminated with CBs. In addition, immobilization of CBs in soil by use of different amendments is a useful method for reducing the environmental risk of CBs.展开更多
Due to easy volatilization of volatile organic compounds from water,it is difficult to monitor their aerobic biodegradation in the traditional single water system.Whether a two-liquid-phase system(TLPS) could overcome...Due to easy volatilization of volatile organic compounds from water,it is difficult to monitor their aerobic biodegradation in the traditional single water system.Whether a two-liquid-phase system(TLPS) could overcome this obstacle and enhance the degradation of volatile contaminants? In this study,a TLPS composed of silicone oil and water was employed to investigate the biodegradation of volatile compounds,trichlorobenzenes(TCBs),by the adapted microorganisms in an activated soil.The degradation and volatilization of TCBs in TLPS and in a single water system were compared.The results showed that due to volatilization losses of TCBs,the mass balance of TCBs in a single water system was very low.In contrast,using TLPS could effectively inhibit the volatilization losses of TCBs and achieved a very good mass balance during the biodegradation process.Meanwhile,the TLPS could increase microbial activity and microbial growth during the degradation process.With TLPS,the TCB degradation was in descending order of 1,2,4-TCB> 1,2,3-TCB>> 1,3,5-TCB,which was related to the exposed concentration of the contaminants in soil.This study showed that TLPS could be employed as an effective tool to evaluate the biodegradation of volatile hydrophobic organic compounds,which could not be achieved with the traditional single water system.展开更多
The efficiencies of free and immobilized bacterial cultures of petroleum hydrocarbon degraders were evaluated and compared in this study. Hydrocarbon-degrading microbial communities with high tolerance to and high deg...The efficiencies of free and immobilized bacterial cultures of petroleum hydrocarbon degraders were evaluated and compared in this study. Hydrocarbon-degrading microbial communities with high tolerance to and high degrading ability of crude oil were obtained from the soil contaminated with crude oil in the Yellow River Delta. Then, the microbial cells were immobilized in sodium alginate (SA) beads and sodium Mginate-diatomite (SAD) beads. The biodegradation of crude oil in soil by immobilized cells was compared with that by free cells at three inoculation concentrations, 1× 104 colony forming units (cfu) kg-^(-1)(low concentration, L), 5 × 104 cfu kg^(-1) (medium concentration, M), and 1× 105 cfu kg^(-1) (high concentration, H). At 20 d after inoculation, the maximum degradation rate in the immobilized systems reached 29.8% (SAD-M), significantly higher (P 〈 0.05) than that of the free cells (21.1%), and the SAD beads showed greater degradation than the SA beads. Moreover, both microbial populations and total microbial activity reached significantly higher level (P 〈 0.05) in the immobilized systems than free cell systems at a same initial inoculation amount. The scanning electronic microscope (SEM) images also confirmed the advantages of the immobilized microstructure of SAD beads. The enhanced degradation and bacterial growth in the SAD beads indicated the high potential of SAD beads as an effective option for bioremediation of crude oil-contaminated soils in the Yellow River Delta.展开更多
In this paper, a nonlinear mathematical model is proposed and analyzed to study the role of dissolved oxygen (DO)-dependent bacteria on biodegradation of one or two organic pollutant(s) in a water body. In the cas...In this paper, a nonlinear mathematical model is proposed and analyzed to study the role of dissolved oxygen (DO)-dependent bacteria on biodegradation of one or two organic pollutant(s) in a water body. In the case of two organic pollutant(s), it is assumed that the one is fast degrading and the other is slow degrading and both are discharged into the water body from outside with constant rates. The density of bacteria is assumed to follow logistic model and its growth increases due to biodegradation of one or two organic pollutant(s) as well as with the increase in the concentration of DO. The model is analyzed using the stability theory of differential equations and by simulation. The model analysis shows that the concentration(s) of one or both organic pollutant(s) decrease(s) as the density of bacteria increases. It is noted that for very large density of bacteria, the organic pollutant(s) may be removed ahnost completely from the water body. It is found that simulation analysis confirms the analytical results. The results obtained in this paper are in line with the experimental observations published in literature.展开更多
基金Project supported by the National High Technology Research and Development Program (863 Program) of China (No.2001AA214191).
文摘Adverse effects on the environment and high persistence in the microbial degradation and environmental fate of polycyclic aromatic hydrocarbons (PAHs) are motivating interest. Many soil microorganisms can degrade PAHs and use various metabolic pathways to do so. However, both the physio-chemical characteristics of compounds as well as the physical, chemical, and biological properties of soils can drastically influence the degradation capacity of naturally occurring microorganisms for field bioremediation. Modern biological techniques have been widely used to promote the efficiency of microbial PAH-degradation and make the biodegradation metabolic pathways more clear. In this review microbial degradation of PAHs in soil is discussed, with emphasis placed on the main degradation pathways and the environmental factors affecting biodegradation.
基金Supported by the National Natural Science Foundation of China (No.29637010, 50325824).
文摘The biodegradation of di-n-butyl phthalate (DBP) using immobilized microbial cells was carded out in an internal airlift loop reactor with ceramic honeycomb supports. A strain that is capable of degrading DBP was isolated from the activated sludge and identified as Bacillus sp. using 16S rDNA sequential analysis. Bacillus sp. could be rapidly attached onto the ceramic honeycomb supports. The immobilized cells could effectively degrade DBP in batch and continuous experiments. When the influent concentration of DBP was 50mg·L^-1, the effluent DBP reached less than lmg.L i with 6h hydraulic retention time (HRT) in continuous experiment. The immobilized microbial cells could grow and accumulate through the biodegradation of DBP, and the rate of degradation is accordingly increased. The possible pathway of DBP biodegradation using immobilized cells was tentatively proposed.
基金supported by the Science Fund Projects of Shandong Province (No.ZR2010DM005)National Key Technology Research and Development Program (No. 2010BAC69B01)+1 种基金Scientific and Technical Projects of Shandong Province on Environmental Protection ‘The source, capacity, and technology study of total control of pollutants in Shandong Province’Science and Technology Development Plan of Qingdao (No. 11-2-3-66-nsh and No. 11-2-1-18-hy)
文摘An environmental capacity model for the petroleum hydrocarbon pollutions (PHs) in Jiaozhou Bay is constructed based on field surveys, mesocosm, and parallel laboratory experiments. Simulated results of PHs seasonal successions in 2003 match the field surveys of Jiaozhou Bay resaonably well with a highest value in July. The Monte Carlo analysis confirms that the variation of PHs concentration significantly correlates with the river input. The water body in the bay is reasonably subjected to self-purification processes, such as volatilization to the atmosphere, biodegradation by microorganism, and transport to the Yellow Sea by water exchange. The environmental capacity of PHs in Jiaozhou Bay is 1500 tons per year IF the seawater quality criterion (Grade Ⅰ/Ⅱ, 0.05 mgLl) in the region is to be satisfied. The contribution to self-purification by volatilization, biodegradation, and transport to the Yellow Sea accounts for 48%, 28%, and 23%, respectively, which make these three processes the main ways of PHs purification in Jiaozhou Bay.
文摘The intensity of Magnetic field by 200, 300 and 400 gaos were selective to study their impacts on bacteria Bacillus, Pseudomonas and yeasts Candida dubliniensis, Candida glabrata, lssatchenkia orientalis and Rhodotorula mucilaginosa growth and to reduce organic pollutants in wastewater by COD, TOC, TN and TP in concentrations of 180, 75, 52 and 84 ppm in pH 7.6 and treatment periods of 2, 4, 6 and 18 h in batch system. Results showed that magnetic field 300 gaos had higher ability to increase bacterial and yeasts growth by 400-600% in 18 h and reduced COD, TOC, TN and TP by 88, 85, 90 and 98.5% in same period treatment. While, the intensity of magnetic field 200 and 400 gaos have no effect on microorganisms growth and reducing organic pollutants. This study is first record for showing and explaining the positive effective of magnetic field on microorganisms growth.
文摘Bioremediation of petroleum hydrocarbons contaminated/polluted soils has been recognized as an efficient, economic, versatile and environmentally good treatment. This method is limited by the microorganisms activity in degrading the spills hydrocarbons. Low solubility of the hydrocarbons involves low bioavailability to microorganisms. The main objective of this research is to increase biodegradation of petroleum hydrocarbons by treating the crude oil polluted soil with the natural biodegradable product and bacterial inoculum. Biodegradation was quantified by total petroleum hydrocarbons (TPH) analyses. The paper presents data obtained in biodegradation process of an artificial polluted soil with 5% and 10% crude oil, treated with a natural biodegradable product and bacterial inoculum during two years of experiment. Biodegradation process takes time to rehabilitate and reuse of the soil in agricultural scopes.
基金financially supported by the Outstanding Youth Fund of the Natural Science Foundation of Jiangsu, China (No. BK20150050)the National Science and Technology Major Project of China (No. 2016YFD08000204)+2 种基金the National Key Basic Research Program of China (No. 2014CB441105)the National Natural Science Foundation of China (Nos. 21277148, 21677149 and 41671236)the National Council for Science and Technology of Kenya (No. NCST/ST&I/RCD/2ND CALL/POST DOC/039)
文摘Chlorobenzenes (CBs) are a group of organic pollutants that pose a high environmental risk due to their toxicity, persistence and possible transfer in the food chain. Available data in literature show that CBs axe detected in different environmental compartments such as soil, water, air and sediment. The widespread presence of CBs in the environment is related to their former extensive use in agriculture and industry. Some CBs are ranked in the list of priority pollutants by the Stockholm Convention, and their reduction or elimination from the environment is therefore of high importance. Environmental risk assessment of CBs requires knowledge on the role and importance of the main environmental fate processes, especially in soil. Furthermore, development of remediation strategies for reduction or elimination of CBs from the environment is related to the enhancement of fate processes that increase their dissipation in various environmental compartments. The main objectives of the current review were to present up-to-date data on fate processes of CBs in the soil environment and to explore possible remediation strategies for soils contaminated with CBs. Dechlorination of highly-chlorinated benzenes is the main degradation pathway under anaerobic conditions, leading to the formation of lower-chlorinated benzenes. Biodegradation of lower-chlorinated benzenes is well documented, especially by strains of adapted or specialized microorganisms. Development of techniques that combine dechlorination of highly-chlorinated benzehes with biodegradation or biomineralization of lower-chlorinated benzenes can result in useful tools for remediation of soils contaminated with CBs. In addition, immobilization of CBs in soil by use of different amendments is a useful method for reducing the environmental risk of CBs.
基金supported by the Specific Fund for Agro-Scientific Research in the Public Interest of China(No.201203045)the National Basic Research Program(973 Program)of China(No.2014CB441105)+1 种基金the National Natural Science Foundation of China (Nos.41301240 and 21277148)the Jiangsu Provincial Natural Science Foundation of China(No.BK20131049)
文摘Due to easy volatilization of volatile organic compounds from water,it is difficult to monitor their aerobic biodegradation in the traditional single water system.Whether a two-liquid-phase system(TLPS) could overcome this obstacle and enhance the degradation of volatile contaminants? In this study,a TLPS composed of silicone oil and water was employed to investigate the biodegradation of volatile compounds,trichlorobenzenes(TCBs),by the adapted microorganisms in an activated soil.The degradation and volatilization of TCBs in TLPS and in a single water system were compared.The results showed that due to volatilization losses of TCBs,the mass balance of TCBs in a single water system was very low.In contrast,using TLPS could effectively inhibit the volatilization losses of TCBs and achieved a very good mass balance during the biodegradation process.Meanwhile,the TLPS could increase microbial activity and microbial growth during the degradation process.With TLPS,the TCB degradation was in descending order of 1,2,4-TCB> 1,2,3-TCB>> 1,3,5-TCB,which was related to the exposed concentration of the contaminants in soil.This study showed that TLPS could be employed as an effective tool to evaluate the biodegradation of volatile hydrophobic organic compounds,which could not be achieved with the traditional single water system.
基金the National Natural Science Foundation of China (No.41073067)the Key Program of the Ministry of Education,China (No.308016)the National Major Special Technological Programme Concerning Water Pollution Control and Management of China (No.2009ZX07010-008)
文摘The efficiencies of free and immobilized bacterial cultures of petroleum hydrocarbon degraders were evaluated and compared in this study. Hydrocarbon-degrading microbial communities with high tolerance to and high degrading ability of crude oil were obtained from the soil contaminated with crude oil in the Yellow River Delta. Then, the microbial cells were immobilized in sodium alginate (SA) beads and sodium Mginate-diatomite (SAD) beads. The biodegradation of crude oil in soil by immobilized cells was compared with that by free cells at three inoculation concentrations, 1× 104 colony forming units (cfu) kg-^(-1)(low concentration, L), 5 × 104 cfu kg^(-1) (medium concentration, M), and 1× 105 cfu kg^(-1) (high concentration, H). At 20 d after inoculation, the maximum degradation rate in the immobilized systems reached 29.8% (SAD-M), significantly higher (P 〈 0.05) than that of the free cells (21.1%), and the SAD beads showed greater degradation than the SA beads. Moreover, both microbial populations and total microbial activity reached significantly higher level (P 〈 0.05) in the immobilized systems than free cell systems at a same initial inoculation amount. The scanning electronic microscope (SEM) images also confirmed the advantages of the immobilized microstructure of SAD beads. The enhanced degradation and bacterial growth in the SAD beads indicated the high potential of SAD beads as an effective option for bioremediation of crude oil-contaminated soils in the Yellow River Delta.
文摘In this paper, a nonlinear mathematical model is proposed and analyzed to study the role of dissolved oxygen (DO)-dependent bacteria on biodegradation of one or two organic pollutant(s) in a water body. In the case of two organic pollutant(s), it is assumed that the one is fast degrading and the other is slow degrading and both are discharged into the water body from outside with constant rates. The density of bacteria is assumed to follow logistic model and its growth increases due to biodegradation of one or two organic pollutant(s) as well as with the increase in the concentration of DO. The model is analyzed using the stability theory of differential equations and by simulation. The model analysis shows that the concentration(s) of one or both organic pollutant(s) decrease(s) as the density of bacteria increases. It is noted that for very large density of bacteria, the organic pollutant(s) may be removed ahnost completely from the water body. It is found that simulation analysis confirms the analytical results. The results obtained in this paper are in line with the experimental observations published in literature.