Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to dif ferent concentrations(0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc(Zn) and cadmium(Cd)...Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to dif ferent concentrations(0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc(Zn) and cadmium(Cd) exposure separately were studied for 15 days in laboratory-controlled conditions. The results show that the specifi c growth rates increased slightly under the lower Zn concentration treatment(0.1 mg/L) at the first 5 d and then decreased gradually, which were significantly reduced with the exposure time in higher Zn concentrations and all Cd treatments compared to respective control, especially for 1.0 and 5.0 mg/L Cd. Chlorophyll a contents showed significant increase in 0.1 mg/L Zn treatment, whereas the gradually reduction were observed in the other three Zn treatments and all Cd treatments. The oxygen evolution rate and respiration rate presented distinct behavior in the Zn-treated samples, but both declined steadily with the exposure time in Cd treatments. The P/R value analyses showed similar variation patterns as chlorophyll a contents. Real-time PCR showed that lower Zn concentration(0.1 mg/L) increased mRNA expression of rbcL gene, whereas higher Zn concentrations and Cd reduced the rbcL expression. Taken together, these findings strongly indicate that Zn and Cd had different effects on S. thunbergii both at the physiological and gene transcription levels, the transcript level of photosynthesis-related gene rbcL can be used as an useful molecular marker of algal growth and environment impacts.展开更多
A new mimic biological Semi permeable Membrane Device (SPMD) introduced for sampling organic pollutants yielded satisfactory results when it was first used as a passive sampler to concentrate and determine 16 kinds of...A new mimic biological Semi permeable Membrane Device (SPMD) introduced for sampling organic pollutants yielded satisfactory results when it was first used as a passive sampler to concentrate and determine 16 kinds of polynuclear aromatic hydrocarbons (PAHs) by means of capillary GC on an HP 5890 GC FID in coastal sediment porewater. The concentration of PAHs in sediment porewater for naphthalene(N), acenaphthlene(AL), acenaphthene(AE), fluorene(F), phenaphthene(P), anthracene(A), fluoranthene(FA), pyrene(Py), benzoanthracene(BA), chrysene(Chr), benzofluor anthene(BF), benzofluoranthene(BF), benzopyrene(BP),indeno[1,2,3, cd] Pyrene(IP), dibenzanthracene(DA) and benzo perylene(BP) were: 50.36, under detection limits(UD), 18.19, 8.41, 8.40, 1.44, UD, 8.01, 524.15, 168.47, 50.13, 123.66, 63.48, 27.40, 82.04 and 58,81 ng/L, respectively.展开更多
The features of organic pollutants degradation mainly characterized by bio-flocculation for step-A of adsorption-biodegredation(AB) process were studied. By investigating the relationship of extracellular polymeric ...The features of organic pollutants degradation mainly characterized by bio-flocculation for step-A of adsorption-biodegredation(AB) process were studied. By investigating the relationship of extracellular polymeric substances(EPS) with bioflocculation and introducing kinetic model of organic pollutant degradation into EPS, the kinetic model of organic pollutant degradation for step-A hioflocculation was deducted. And through the experiments, the kinetic constants were calculated as follows: k1 =0. 005 3; kc1 =1 710.7 and vmax1=10 min^-1.展开更多
Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies fo...Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies for nitrobenzene, permanganate index, turbidity and ammonia were investigated. Effects of shock loading and SEM (Scanning Electron Microscope) observation on BAC were studied. Backwashing and its intensity of BAC were also discussed. The results showed that BAC took short time to start up and recover to the normal condition after shock loading. The shock loading studies showed that the removal efficiency of BAC was not completely inhibited even at high concentration of nitrobenzene. Backwashing performed once every 10-20 d, or an average of 15 d. Backwashing intensity was 12-14 L/(s·m2) with air and 3-4 L/(s·m2) with water.展开更多
Biodegradation of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane(DDT)in soil by laccase extract from white rot fungi under different experimental conditions was investigated.DDTs,which stands for the sum of p,p′-DDE,...Biodegradation of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane(DDT)in soil by laccase extract from white rot fungi under different experimental conditions was investigated.DDTs,which stands for the sum of p,p′-DDE,o,p′-DDT,p,p′-DDD and p,p′-DDT in soil was degraded efficiently,and the residue decreased rapidly during the first 15 days and then slowly during the period of 16-25 days.The biodegradation of DDTs in soil fitted the pseudo-first-order kinetics.For 5,10,15 and 25 days of incubation with laccase,the residue of DDTs in soil under different atmospheres was decreased by 20%-33%,34%-52%,41%-61%and 41%-69%respectively,under different flooding conditions that was decreased by 12%-17%,17%-30%,30%-45%and 35%-52%respectively, and for different soils that was decreased by 25%-34%,39%-53%,44%-58%and 47%-62%respectively.The half-life of DDTs in soil ranged from 15.07 to 32.95 days under O2,air or N2 atmospheres,23.07 to 40.71 days under different flooding conditions,and 18.78 to 28.88 days for different soils.Laccase is an efficient and safe agent for bioremediation of DDT-contaminated soil.展开更多
A series of orthogonal array experiments were conducted using carbon source, ammonia nitrogen and total phosphorus (TP) as major influencing factors to investigate the effects of nutrients on biofouling formation an...A series of orthogonal array experiments were conducted using carbon source, ammonia nitrogen and total phosphorus (TP) as major influencing factors to investigate the effects of nutrients on biofouling formation and preponderant bacteria diversity in the recirculatiug cooling water system. Carbon source was demonstrated to be the most significant determinant affecting the biofouling formation. A minimum biofouling outcome was obtained when BOD2, NHa+-N and TP were 25, 10, and 1 mg/L, respectively. Then the preponderant bacteria strains in biofouling mass under two typical culture conditions (negative and favorable) were identified applying both traditional biochemical methods and further molecular biology technology with phylogenetic affiliation analysis, which indicated that Enterobacteriaceae Enterobacter, Micrococcaceae Staphylococcus, Bacillaceae Bacillus, Enterobacteriaceae Proteus, Neisseriaceae Neisseria and Pseudomonadaceae Pseudomonas were dominant under negative condition, while Enterobacteriaceae Klebsiella, Enterobacteriaceae Enterobacter and Microbacterium - under favorable one.展开更多
The presence of feacal-derived pathogens in water is responsible for several infectious diseases and deaths worldwide. As a solution, sources of fecal pollution in waters must be accurately assessed, properly determin...The presence of feacal-derived pathogens in water is responsible for several infectious diseases and deaths worldwide. As a solution, sources of fecal pollution in waters must be accurately assessed, properly determined and strictly controlled. However, the exercise has remained challenging due to the existing overlapping characteristics by different members of faecal coliform bacteria and the inadequacy of information pertaining to the contribution of seasonality and weather condition on tracking the possible sources of pollution. There are continued ef forts to improve the Faecal Contamination Source Tracking(FCST) techniques such as Microbial Source Tracking(MST). This study aimed to make contribution to MST by evaluating the efficacy of combining site specific quantification of faecal contamination indicator bacteria and detection of DNA markers while accounting for seasonality and weather conditions' eff ects in tracking the major sources of faecal contamination in a freshwater system(Donghu Lake, China). The results showed that the use of cyd gene in addition to lacZ and uidA genes differentiates E. coli from other closely related faecal bacteria. The use of selective media increases the pollution source tracking accuracy. BSA addition boosts PCR detection and increases FCST efficiency. Seasonality and weather variability also influence the detection limit for DNA markers.展开更多
Water is contaminated mainly by chemical, physical and biological pollutants. At present, domestic reports on biological pollution of water environment are much less. Biological pollution in water environment pollutio...Water is contaminated mainly by chemical, physical and biological pollutants. At present, domestic reports on biological pollution of water environment are much less. Biological pollution in water environment pollution which is stable and infectious is the main part of water pollution. To fastly and accuratly detecte biological contamination of the water environment is extremely important for the control of disease outbreaks and water quality protection and public health security. This paper systematically introduces the research progress in biological water environment pollution detection methods in molecular biology aquatic environment, and explore molecular biology methods in the detection of biological contamination in water environment problems and trends.展开更多
Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contamin...Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contaminated with diesel oil, to follow changes in the dominant species of the microbial community in the hydrocarbon-polluted soil via proteomics. Analysis of the proteins extracted from enriched cultures growing in Luria-Bertani (LB) media showed a change in the microbial community. The majority of the proteins were related to gIycolysis pathways, structural or protein synthesis. The results showed a relative increase in the complexity of the soil microbial community with hydrocarbon contamination, especially after 15 days of incubation. Species such as Ralstonia solanacearum, Synechococcus elongatus and different Clostridium sp. were adapted to contamination, not appearing in the control soil, although Bacillus sp. dominated the growing in LB in any of the treatments. We conclude that the identification of microbial species in soil extracts by culture-dependent proteomics is able to partially explain the changes in the diversity of the soil microbial community in hydrocarbon polluted semi-arid soils, but this information is much more limited than that provided by molecular methods.展开更多
The disposal of spent activated carbon(AC) will inevitably create secondary pollution. In overcoming this problem, the spent AC can be regenerated by means of biological approach. Bioregeneration is the phenomenon in ...The disposal of spent activated carbon(AC) will inevitably create secondary pollution. In overcoming this problem, the spent AC can be regenerated by means of biological approach. Bioregeneration is the phenomenon in which through the action of microorganisms, the adsorbed pollutants on the surface of the AC will be biodegraded and this enables further adsorption of pollutants to occur with time elapse. This review provides the challenges and perspectives for effective bioregeneration to occur in biological activated carbon(BAC)column. Owing to very few reported works on the bioregeneration rate in BAC column, emphasis is put forward on the recently developed models of bioregeneration kinetic in batch system. All in all, providing potential solutions in increasing the lifespan of AC and the enhancement of bioregeneration rate will definitely overcome the bottlenecks in spent AC bioregeneration.展开更多
China has experienced severe haze and visibility degradation problems in recent years because of rapid urbanization and industrialization.In this study,daily atmospheric fine-aerosol samples were concurrently collecte...China has experienced severe haze and visibility degradation problems in recent years because of rapid urbanization and industrialization.In this study,daily atmospheric fine-aerosol samples were concurrently collected at three sites over the Pearl River Delta(PRD)region during 1–29 October 2014.PM2.5 samples were analyzed for organic carbon and elemental carbon using a thermal/optical carbon analyzer.Major water-soluble inorganic ions including F−,Cl−,NO3−,SO42−,Na+,NH4+,K+,Mg2+,and Ca2+were analyzed by ion chromatography.The results show that the temporal variations of PM2.5 concentration at the three sites were highly parallel,with particle pollution events simultaneously observed during 13–19 October(EP1)and 23–27 October(EP2),suggesting that pollution events in the PRD region are usually regional.This can most likely be attributed to the significant influences of synoptic conditions,which regionally facilitate or block diffusion of air pollutants.The chemical compositions of PM2.5 at the three sites were also found to be similar,dominated by organics and sulfates.The results indicate that accumulation of traffic emissions seems to play important roles in particle pollution for the PRD region,leading in this case to elevated nitrate contributions during both EP1 and EP2 at the three sites.Moreover,the authors found that locally emitted aerosols from biomass burning only markedly influenced the air condition at one site,Nanhai,during EP1,while regionally transported biomass burning aerosols from eastern and northern Guangdong Province influenced all three sampling sites when the PRD was dominated by polluted air from these directions during EP2.展开更多
We have adapted and characterized electrolysis reactors to complement the conversion of regional- and community-scale quantities of waste into fuel or chemicals, The overall process must he able to contend with a wide...We have adapted and characterized electrolysis reactors to complement the conversion of regional- and community-scale quantities of waste into fuel or chemicals, The overall process must he able to contend with a wide range of feedstocks, must he inherently safe, and should not rely on external facilities for co-reactants or heat rejection and supply, Our current approach is based on the upgrading of hio-oil produced by the hydrothermal liquefaction (HTL) of carbon-containing waste feedstocks, HTL can convert a variety of feedstocks into a bio-oil that requires much less upgrading than the products of other ways of deconstructing hiomass, We are now investigating the use of electrochemical processes for the further conversions needed to transform the hio-oil from HTL into fuel or higher value chemicals, We, and others, have shown that electrochemical reduction can offer adequate reaction rates and at least some of the nec- essary generality, In addition, an electrochemical reactor necessarily both oxidizes (removes electrons) on one side of the reactor and reduces (adds electrons) on the other side, Therefore, the two types of reac- tions could, in principle, he coupled to upgrade the hio-oil and simultaneously polish the water that is employed as a reactant and a carrier in the upstream HTL, Here, we overview a notional process, the possible conversion chemistry, and the economics of an HTL-electrochemical process,展开更多
基金Supported by the National Natural Science Foundation of China(No.41306122)the National Special Research Fund for Non-Profit Marine Sector(Nos.201405040,201505022)+1 种基金the Scientific Funds for Outstanding Young Scientists of Shandong Province Award(No.BS2012HZ013)the Shandong Agricultural Application Technology Innovation of Research Project
文摘Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to dif ferent concentrations(0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc(Zn) and cadmium(Cd) exposure separately were studied for 15 days in laboratory-controlled conditions. The results show that the specifi c growth rates increased slightly under the lower Zn concentration treatment(0.1 mg/L) at the first 5 d and then decreased gradually, which were significantly reduced with the exposure time in higher Zn concentrations and all Cd treatments compared to respective control, especially for 1.0 and 5.0 mg/L Cd. Chlorophyll a contents showed significant increase in 0.1 mg/L Zn treatment, whereas the gradually reduction were observed in the other three Zn treatments and all Cd treatments. The oxygen evolution rate and respiration rate presented distinct behavior in the Zn-treated samples, but both declined steadily with the exposure time in Cd treatments. The P/R value analyses showed similar variation patterns as chlorophyll a contents. Real-time PCR showed that lower Zn concentration(0.1 mg/L) increased mRNA expression of rbcL gene, whereas higher Zn concentrations and Cd reduced the rbcL expression. Taken together, these findings strongly indicate that Zn and Cd had different effects on S. thunbergii both at the physiological and gene transcription levels, the transcript level of photosynthesis-related gene rbcL can be used as an useful molecular marker of algal growth and environment impacts.
文摘A new mimic biological Semi permeable Membrane Device (SPMD) introduced for sampling organic pollutants yielded satisfactory results when it was first used as a passive sampler to concentrate and determine 16 kinds of polynuclear aromatic hydrocarbons (PAHs) by means of capillary GC on an HP 5890 GC FID in coastal sediment porewater. The concentration of PAHs in sediment porewater for naphthalene(N), acenaphthlene(AL), acenaphthene(AE), fluorene(F), phenaphthene(P), anthracene(A), fluoranthene(FA), pyrene(Py), benzoanthracene(BA), chrysene(Chr), benzofluor anthene(BF), benzofluoranthene(BF), benzopyrene(BP),indeno[1,2,3, cd] Pyrene(IP), dibenzanthracene(DA) and benzo perylene(BP) were: 50.36, under detection limits(UD), 18.19, 8.41, 8.40, 1.44, UD, 8.01, 524.15, 168.47, 50.13, 123.66, 63.48, 27.40, 82.04 and 58,81 ng/L, respectively.
基金project (2004B4604A01-01) supported by the Mega-projects of Science Research for the 10th Five-Year Plan
文摘The features of organic pollutants degradation mainly characterized by bio-flocculation for step-A of adsorption-biodegredation(AB) process were studied. By investigating the relationship of extracellular polymeric substances(EPS) with bioflocculation and introducing kinetic model of organic pollutant degradation into EPS, the kinetic model of organic pollutant degradation for step-A hioflocculation was deducted. And through the experiments, the kinetic constants were calculated as follows: k1 =0. 005 3; kc1 =1 710.7 and vmax1=10 min^-1.
文摘Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies for nitrobenzene, permanganate index, turbidity and ammonia were investigated. Effects of shock loading and SEM (Scanning Electron Microscope) observation on BAC were studied. Backwashing and its intensity of BAC were also discussed. The results showed that BAC took short time to start up and recover to the normal condition after shock loading. The shock loading studies showed that the removal efficiency of BAC was not completely inhibited even at high concentration of nitrobenzene. Backwashing performed once every 10-20 d, or an average of 15 d. Backwashing intensity was 12-14 L/(s·m2) with air and 3-4 L/(s·m2) with water.
基金Supported by the Science and Technology Planning Project of Guangdong Province of China(2008B080701012)the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of Chinathe Leading Academic Discipline Program of Phase-3 of"Project-211"for South China Agricultural University(2009B010100001)
文摘Biodegradation of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane(DDT)in soil by laccase extract from white rot fungi under different experimental conditions was investigated.DDTs,which stands for the sum of p,p′-DDE,o,p′-DDT,p,p′-DDD and p,p′-DDT in soil was degraded efficiently,and the residue decreased rapidly during the first 15 days and then slowly during the period of 16-25 days.The biodegradation of DDTs in soil fitted the pseudo-first-order kinetics.For 5,10,15 and 25 days of incubation with laccase,the residue of DDTs in soil under different atmospheres was decreased by 20%-33%,34%-52%,41%-61%and 41%-69%respectively,under different flooding conditions that was decreased by 12%-17%,17%-30%,30%-45%and 35%-52%respectively, and for different soils that was decreased by 25%-34%,39%-53%,44%-58%and 47%-62%respectively.The half-life of DDTs in soil ranged from 15.07 to 32.95 days under O2,air or N2 atmospheres,23.07 to 40.71 days under different flooding conditions,and 18.78 to 28.88 days for different soils.Laccase is an efficient and safe agent for bioremediation of DDT-contaminated soil.
基金supported by the National Natural Science Foundation of China (No.20707040)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No. PCRRF08002).
文摘A series of orthogonal array experiments were conducted using carbon source, ammonia nitrogen and total phosphorus (TP) as major influencing factors to investigate the effects of nutrients on biofouling formation and preponderant bacteria diversity in the recirculatiug cooling water system. Carbon source was demonstrated to be the most significant determinant affecting the biofouling formation. A minimum biofouling outcome was obtained when BOD2, NHa+-N and TP were 25, 10, and 1 mg/L, respectively. Then the preponderant bacteria strains in biofouling mass under two typical culture conditions (negative and favorable) were identified applying both traditional biochemical methods and further molecular biology technology with phylogenetic affiliation analysis, which indicated that Enterobacteriaceae Enterobacter, Micrococcaceae Staphylococcus, Bacillaceae Bacillus, Enterobacteriaceae Proteus, Neisseriaceae Neisseria and Pseudomonadaceae Pseudomonas were dominant under negative condition, while Enterobacteriaceae Klebsiella, Enterobacteriaceae Enterobacter and Microbacterium - under favorable one.
基金Supported by the National Natural Science Foundation of China(Nos.31670465,31370504)
文摘The presence of feacal-derived pathogens in water is responsible for several infectious diseases and deaths worldwide. As a solution, sources of fecal pollution in waters must be accurately assessed, properly determined and strictly controlled. However, the exercise has remained challenging due to the existing overlapping characteristics by different members of faecal coliform bacteria and the inadequacy of information pertaining to the contribution of seasonality and weather condition on tracking the possible sources of pollution. There are continued ef forts to improve the Faecal Contamination Source Tracking(FCST) techniques such as Microbial Source Tracking(MST). This study aimed to make contribution to MST by evaluating the efficacy of combining site specific quantification of faecal contamination indicator bacteria and detection of DNA markers while accounting for seasonality and weather conditions' eff ects in tracking the major sources of faecal contamination in a freshwater system(Donghu Lake, China). The results showed that the use of cyd gene in addition to lacZ and uidA genes differentiates E. coli from other closely related faecal bacteria. The use of selective media increases the pollution source tracking accuracy. BSA addition boosts PCR detection and increases FCST efficiency. Seasonality and weather variability also influence the detection limit for DNA markers.
文摘Water is contaminated mainly by chemical, physical and biological pollutants. At present, domestic reports on biological pollution of water environment are much less. Biological pollution in water environment pollution which is stable and infectious is the main part of water pollution. To fastly and accuratly detecte biological contamination of the water environment is extremely important for the control of disease outbreaks and water quality protection and public health security. This paper systematically introduces the research progress in biological water environment pollution detection methods in molecular biology aquatic environment, and explore molecular biology methods in the detection of biological contamination in water environment problems and trends.
基金Supported by the JAE-Program for Ph.D. Students of Spanish Research Council
文摘Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contaminated with diesel oil, to follow changes in the dominant species of the microbial community in the hydrocarbon-polluted soil via proteomics. Analysis of the proteins extracted from enriched cultures growing in Luria-Bertani (LB) media showed a change in the microbial community. The majority of the proteins were related to gIycolysis pathways, structural or protein synthesis. The results showed a relative increase in the complexity of the soil microbial community with hydrocarbon contamination, especially after 15 days of incubation. Species such as Ralstonia solanacearum, Synechococcus elongatus and different Clostridium sp. were adapted to contamination, not appearing in the control soil, although Bacillus sp. dominated the growing in LB in any of the treatments. We conclude that the identification of microbial species in soil extracts by culture-dependent proteomics is able to partially explain the changes in the diversity of the soil microbial community in hydrocarbon polluted semi-arid soils, but this information is much more limited than that provided by molecular methods.
基金financial support from the Universiti Teknologi PETRONAS via YUTP-FRG(0153AA-E48)
文摘The disposal of spent activated carbon(AC) will inevitably create secondary pollution. In overcoming this problem, the spent AC can be regenerated by means of biological approach. Bioregeneration is the phenomenon in which through the action of microorganisms, the adsorbed pollutants on the surface of the AC will be biodegraded and this enables further adsorption of pollutants to occur with time elapse. This review provides the challenges and perspectives for effective bioregeneration to occur in biological activated carbon(BAC)column. Owing to very few reported works on the bioregeneration rate in BAC column, emphasis is put forward on the recently developed models of bioregeneration kinetic in batch system. All in all, providing potential solutions in increasing the lifespan of AC and the enhancement of bioregeneration rate will definitely overcome the bottlenecks in spent AC bioregeneration.
基金This work was supported by the National Key Research and Development Program of China[grant numbers 2017YFC0210104 and 2016YFC0203305]the National Natural Science Foundation of China[grant numbers 41875152,41530641,and 41630422]+1 种基金the Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province[Grant No.2019B121205004]the Fundamental Research Funds for the Central Universities[grant number 19lgpy26].
文摘China has experienced severe haze and visibility degradation problems in recent years because of rapid urbanization and industrialization.In this study,daily atmospheric fine-aerosol samples were concurrently collected at three sites over the Pearl River Delta(PRD)region during 1–29 October 2014.PM2.5 samples were analyzed for organic carbon and elemental carbon using a thermal/optical carbon analyzer.Major water-soluble inorganic ions including F−,Cl−,NO3−,SO42−,Na+,NH4+,K+,Mg2+,and Ca2+were analyzed by ion chromatography.The results show that the temporal variations of PM2.5 concentration at the three sites were highly parallel,with particle pollution events simultaneously observed during 13–19 October(EP1)and 23–27 October(EP2),suggesting that pollution events in the PRD region are usually regional.This can most likely be attributed to the significant influences of synoptic conditions,which regionally facilitate or block diffusion of air pollutants.The chemical compositions of PM2.5 at the three sites were also found to be similar,dominated by organics and sulfates.The results indicate that accumulation of traffic emissions seems to play important roles in particle pollution for the PRD region,leading in this case to elevated nitrate contributions during both EP1 and EP2 at the three sites.Moreover,the authors found that locally emitted aerosols from biomass burning only markedly influenced the air condition at one site,Nanhai,during EP1,while regionally transported biomass burning aerosols from eastern and northern Guangdong Province influenced all three sampling sites when the PRD was dominated by polluted air from these directions during EP2.
基金supported by the Laboratory Directed Research & Development program at Pacific Northwest National Laboratory (PNNL)
文摘We have adapted and characterized electrolysis reactors to complement the conversion of regional- and community-scale quantities of waste into fuel or chemicals, The overall process must he able to contend with a wide range of feedstocks, must he inherently safe, and should not rely on external facilities for co-reactants or heat rejection and supply, Our current approach is based on the upgrading of hio-oil produced by the hydrothermal liquefaction (HTL) of carbon-containing waste feedstocks, HTL can convert a variety of feedstocks into a bio-oil that requires much less upgrading than the products of other ways of deconstructing hiomass, We are now investigating the use of electrochemical processes for the further conversions needed to transform the hio-oil from HTL into fuel or higher value chemicals, We, and others, have shown that electrochemical reduction can offer adequate reaction rates and at least some of the nec- essary generality, In addition, an electrochemical reactor necessarily both oxidizes (removes electrons) on one side of the reactor and reduces (adds electrons) on the other side, Therefore, the two types of reac- tions could, in principle, he coupled to upgrade the hio-oil and simultaneously polish the water that is employed as a reactant and a carrier in the upstream HTL, Here, we overview a notional process, the possible conversion chemistry, and the economics of an HTL-electrochemical process,