The recycling of suitable organic wastes can enhance soil fertility via effects on soil physical, chemical and biological properties. To compare the effects of digested (DS), thermally dried (TDS) and composted dewate...The recycling of suitable organic wastes can enhance soil fertility via effects on soil physical, chemical and biological properties. To compare the effects of digested (DS), thermally dried (TDS) and composted dewatered (CDS) sewage sludge on soil microbiological properties, an experiment was conducted at field sites for more than one year (401 d) when applied to two Mediterranean degraded soils (loam and loamy sand soils). All three types of sewage sludge had a significant effect on measured parameters. In a short time, the plots of both loamy sand and loam soils amended with TDS showed the highest microbial basal respiration (loam soil: P < 0.01; loamy sand soil: P < 0.001) and carbon mineralization coefficient (loam soil: P < 0.01; loamy sand soil: P < 0.001). Furthermore, on loamy sand soil, the plots amended with TDS showed the highest microbial metabolic quotient (qCO 2 ) (P < 0.05). This study revealed that the addition of sludge caused transient non-equilibrium effects on almost all soil microbial properties. However, there were no differences one year later because the remaining organic carbon was stable and quite similar in all treatments. These results may have practical implications for the rehabilitation of degraded soils.展开更多
基金Supported by CIRIT (Consejo Interdepartamental de Investigación e Innovación Tecnológica),the Department of the Environment of the Autonomous Government of Catalonia,and the Spanish Ministry of Education and Science
文摘The recycling of suitable organic wastes can enhance soil fertility via effects on soil physical, chemical and biological properties. To compare the effects of digested (DS), thermally dried (TDS) and composted dewatered (CDS) sewage sludge on soil microbiological properties, an experiment was conducted at field sites for more than one year (401 d) when applied to two Mediterranean degraded soils (loam and loamy sand soils). All three types of sewage sludge had a significant effect on measured parameters. In a short time, the plots of both loamy sand and loam soils amended with TDS showed the highest microbial basal respiration (loam soil: P < 0.01; loamy sand soil: P < 0.001) and carbon mineralization coefficient (loam soil: P < 0.01; loamy sand soil: P < 0.001). Furthermore, on loamy sand soil, the plots amended with TDS showed the highest microbial metabolic quotient (qCO 2 ) (P < 0.05). This study revealed that the addition of sludge caused transient non-equilibrium effects on almost all soil microbial properties. However, there were no differences one year later because the remaining organic carbon was stable and quite similar in all treatments. These results may have practical implications for the rehabilitation of degraded soils.