采用沿深平均二维数值模型对南黄海辐射沙脊群西洋海域的潮流场和物质扩散场进行了模拟,计算和分析了大潮情况下海域5 m、7 m和10 m 3种水深(理论基准面下)排放位置处达标污水输移扩散的范围及分布规律。结果表明,污水排入海后,会很快...采用沿深平均二维数值模型对南黄海辐射沙脊群西洋海域的潮流场和物质扩散场进行了模拟,计算和分析了大潮情况下海域5 m、7 m和10 m 3种水深(理论基准面下)排放位置处达标污水输移扩散的范围及分布规律。结果表明,污水排入海后,会很快被稀释,各排放位置200和500稀释度等值线包络面积均较小,且包络面积随水深增加有明显变小的规律。拟合了不同污水排放量对应的200和500稀释倍数包络面积,发现两者呈良好的幂级数关系。展开更多
To improve the mixing efficiency in water purification or wastewater treatment process and understand the mechanism of mass transfer,and a suitable evaluation factor is introduced to evaluate the efficiency of mixing ...To improve the mixing efficiency in water purification or wastewater treatment process and understand the mechanism of mass transfer,and a suitable evaluation factor is introduced to evaluate the efficiency of mixing process.The diffusion mass transfer under turbulent condition is investigated based on dynamic and mathematical analysis.The results indicate that submicroscopic diffusion is the rate-limiting step in mass transfer,and the inertia effect of micro vortex causes the phase mixing.An excellent efficiency can be obtained by controlling the scale of micro vortex within millimeter.Furthermore,a new indicator named mixing factor(IH)is proposed to evaluate the efficiency of mixing processes,which is more feasible than conventional evaluation methods,because of its connection of mixing extent with energy consumption.展开更多
文摘采用沿深平均二维数值模型对南黄海辐射沙脊群西洋海域的潮流场和物质扩散场进行了模拟,计算和分析了大潮情况下海域5 m、7 m和10 m 3种水深(理论基准面下)排放位置处达标污水输移扩散的范围及分布规律。结果表明,污水排入海后,会很快被稀释,各排放位置200和500稀释度等值线包络面积均较小,且包络面积随水深增加有明显变小的规律。拟合了不同污水排放量对应的200和500稀释倍数包络面积,发现两者呈良好的幂级数关系。
基金Sponsored by the National Eleventh Five-year Special Item of Water Pollution (Grant No.2008ZX07207-005-02)the National Eleventh Five-year Supporting Plan of Science and Technology(Grant No.2006BAJ03A05 -01)the Excellent Younger Teacher Awards Project of Harbin Institute of Technology(Grant No.NACZ98504851)
文摘To improve the mixing efficiency in water purification or wastewater treatment process and understand the mechanism of mass transfer,and a suitable evaluation factor is introduced to evaluate the efficiency of mixing process.The diffusion mass transfer under turbulent condition is investigated based on dynamic and mathematical analysis.The results indicate that submicroscopic diffusion is the rate-limiting step in mass transfer,and the inertia effect of micro vortex causes the phase mixing.An excellent efficiency can be obtained by controlling the scale of micro vortex within millimeter.Furthermore,a new indicator named mixing factor(IH)is proposed to evaluate the efficiency of mixing processes,which is more feasible than conventional evaluation methods,because of its connection of mixing extent with energy consumption.