A field experiment was conducted to study the feasibility of irradiated and non-irradiated sewage sludge as a fertilizer for the growth of wheat and rice. The irradiated and non-irradiated sewage sludge were applied a...A field experiment was conducted to study the feasibility of irradiated and non-irradiated sewage sludge as a fertilizer for the growth of wheat and rice. The irradiated and non-irradiated sewage sludge were applied at rates of 0 (CK), 75, 150, 225 and 300 kg N ha-1 for wheat, and 0 (CK), 112.5, 225, 337.5 and 450 kg N ha-1 for rice, respectively. (NH4)2SO4 at a rate of 150 kg N ha-1 for wheat, and 225 kg N ha-1 for rice were added to the control treatments. Additionally, 20 kg 15N ha-1 in the form of (NH4)2SO4 was added to each treatment for wheat to study the effect of sewage sludge on chemical nitrogen fertilizer recovery. The results showed that the irradiation of sewage sludge by gamma ray at a dosage of 5 kGy increased crop yield by 11%~27% as compared to the non-irradiated treatments. Irradiation stimulated mineralization of organic nitrogen in the sludge and improved seedling growth. It was found that addition of irradiated sludge could reduce the leaching loss of chemical nitrogen fertilizer. Both irradiated and non-irradiated sewage sludge could increase the content of soil total nitrogen. Based on the preliminary results, it was concluded that irradiated sewage sludge could partly substitute for chemical nitrogen fertilizer in crop production.展开更多
An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly...An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly in this system. When chemical oxygen demand ρ(COD) is 332 - 420 mg/L, concentration of ammonia p(NH3-N) is 30 - 40 mg/L and concentration of total phosphorous p(TP) is 6.0 -9.0 mg/L in influent, the system still ensures ρ(COD)〈23 mg/L, ρ(NH3-N)〈3.2 mg/L and ρ(TP)〈0. 72 mg/L in effluent. Besides, when the concentration of dissolved oxygen ρ(DO) is around 1.0 mg/L, sludge production is less than 0. 140 g with the consumption of 1 g COD, and the phosphorous removal exceeds 91 %. Also, 48.4% of total nitrogen is removed by simultaneous nitrification and denitrification.展开更多
The purpose of this work was to study the potential to enhance biogas production from pulp and paper mill sludge by the use of thermal pre-treatment in combination with chemical pre-treatment. Biogas from waste is a r...The purpose of this work was to study the potential to enhance biogas production from pulp and paper mill sludge by the use of thermal pre-treatment in combination with chemical pre-treatment. Biogas from waste is a renewable fuel with very low emissions during combustion. To further reduce the use of fossil fuels, more biogas substrates are necessary. Pulp and paper mill sludge is a large untapped reservoir of potential biogas. Pulp and paper mill sludge was collected from a mill that produces both pulp and paper and has a modified waste activated sludge system as part of its wastewater treatment. Pre-treatments were chosen heat (70 ~C or 140℃) combined with either acid (pH 2 or pH 4) or base (pH 9 or pH 11, obtained with Ca(OH)2 or NaOH). Biogas potential was tested by anaerobic digestion batch assays under mesophilic conditions. All pre-treatments were tested in six replicates. Biogas volume was measured with a gas-tight syringe and methane concentration was measured with a gas chromatograph. The methane yield from sludge subjected to thermal pre-treatment at 70℃ did not differ from the untreated sludge, but thermal pre-treatment at 140℃ had a positive effect. Within the 70℃ thermal pre-treatment group, the pH 2 acid was the most successful chemical pre-treatment, and Ca(OH)2 pH 9 had the least effect with no measurable improvement in methane yield. For the 140 ℃ thermal pre-treatment group, acid and NaOH impacted methane production negatively, while the Ca(OH)2-treated sludge did not differ from sludge with no chemical pre-treatment. In conclusion, thermal pre-treatment at 70℃ showed no effect, whereas, pre-treatment at 140℃ improved methane yield with 170%, and for this sludge additional, chemical pre-treatments are unnecessary.展开更多
文摘A field experiment was conducted to study the feasibility of irradiated and non-irradiated sewage sludge as a fertilizer for the growth of wheat and rice. The irradiated and non-irradiated sewage sludge were applied at rates of 0 (CK), 75, 150, 225 and 300 kg N ha-1 for wheat, and 0 (CK), 112.5, 225, 337.5 and 450 kg N ha-1 for rice, respectively. (NH4)2SO4 at a rate of 150 kg N ha-1 for wheat, and 225 kg N ha-1 for rice were added to the control treatments. Additionally, 20 kg 15N ha-1 in the form of (NH4)2SO4 was added to each treatment for wheat to study the effect of sewage sludge on chemical nitrogen fertilizer recovery. The results showed that the irradiation of sewage sludge by gamma ray at a dosage of 5 kGy increased crop yield by 11%~27% as compared to the non-irradiated treatments. Irradiation stimulated mineralization of organic nitrogen in the sludge and improved seedling growth. It was found that addition of irradiated sludge could reduce the leaching loss of chemical nitrogen fertilizer. Both irradiated and non-irradiated sewage sludge could increase the content of soil total nitrogen. Based on the preliminary results, it was concluded that irradiated sewage sludge could partly substitute for chemical nitrogen fertilizer in crop production.
基金Project (50278101) supported by the National Natural Science Foundation of China Project( CSTC, 2005AB7030)supported by Chongqing Key Technologies Research and Development Program
文摘An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly in this system. When chemical oxygen demand ρ(COD) is 332 - 420 mg/L, concentration of ammonia p(NH3-N) is 30 - 40 mg/L and concentration of total phosphorous p(TP) is 6.0 -9.0 mg/L in influent, the system still ensures ρ(COD)〈23 mg/L, ρ(NH3-N)〈3.2 mg/L and ρ(TP)〈0. 72 mg/L in effluent. Besides, when the concentration of dissolved oxygen ρ(DO) is around 1.0 mg/L, sludge production is less than 0. 140 g with the consumption of 1 g COD, and the phosphorous removal exceeds 91 %. Also, 48.4% of total nitrogen is removed by simultaneous nitrification and denitrification.
文摘The purpose of this work was to study the potential to enhance biogas production from pulp and paper mill sludge by the use of thermal pre-treatment in combination with chemical pre-treatment. Biogas from waste is a renewable fuel with very low emissions during combustion. To further reduce the use of fossil fuels, more biogas substrates are necessary. Pulp and paper mill sludge is a large untapped reservoir of potential biogas. Pulp and paper mill sludge was collected from a mill that produces both pulp and paper and has a modified waste activated sludge system as part of its wastewater treatment. Pre-treatments were chosen heat (70 ~C or 140℃) combined with either acid (pH 2 or pH 4) or base (pH 9 or pH 11, obtained with Ca(OH)2 or NaOH). Biogas potential was tested by anaerobic digestion batch assays under mesophilic conditions. All pre-treatments were tested in six replicates. Biogas volume was measured with a gas-tight syringe and methane concentration was measured with a gas chromatograph. The methane yield from sludge subjected to thermal pre-treatment at 70℃ did not differ from the untreated sludge, but thermal pre-treatment at 140℃ had a positive effect. Within the 70℃ thermal pre-treatment group, the pH 2 acid was the most successful chemical pre-treatment, and Ca(OH)2 pH 9 had the least effect with no measurable improvement in methane yield. For the 140 ℃ thermal pre-treatment group, acid and NaOH impacted methane production negatively, while the Ca(OH)2-treated sludge did not differ from sludge with no chemical pre-treatment. In conclusion, thermal pre-treatment at 70℃ showed no effect, whereas, pre-treatment at 140℃ improved methane yield with 170%, and for this sludge additional, chemical pre-treatments are unnecessary.