The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizer...The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizers and industrial wastewater. In this study, several factors were selected for evaluating and regionalizing the water environmental capacity by ArcG1S spatial analysis, including geomor- phologic characteristics, water quality goals, water body accessibility, water-dilution channels, and current water quality. Then, the spa- tial optimization of agriculture and industry was adjusted through overlay analysis, based on the balance between industrial space and water environmental capacity. The results show that the water environmental capacity gradually decreases from the west to the east, in contrast, the pollution caused by industrial and agricultural clustering is distributes along Taihu Lake, Gehu Lake and urban districts. The analysis of the agricultural space focuses on optimizing key protected areas of the Taihu Lake Basin, and the shores of Gehu Lake, optimally adjusting the second protected areas of the Taihu Lake Basin, and generally adjusting the urban areas of Changzhou and Wuxi cities. The analysis of industrial space focuses on optimizing the downtowns of Changzhou and Wuxi cities, optimally adjusting key protected areas and second protected areas of the Taihu Lake Basin, and generally adjusting the south and southwest of Gehu Lake. Lastly, some schemes of industrial and agricultural layouts and policies for the direction of industrial and agricultural development were proposed, reflecting a correlation between industry and agriculture and the water environment.展开更多
The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The r...The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The results show that haze days occur significantly more often in eastern China than in western China.The annual number of haze days is 5–30 d in most parts of central-eastern China,with some areas experiencing more than 30 d,while less than 5 d are averagely occurring in western China.Haze days are mainly concentrated in the winter half-year,with most in winter,followed by autumn,spring,and then summer.Nearly 20%of annual haze days are experienced in December.The haze days in central-eastern China in the winter half-year have a significant increasing trend of 1.7 d per decade during 1961–2012.There were great increases in haze days in the 1960s,1970s and the beginning of the 21st century.There was also significant abrupt changes of haze days in the early 1970s and 2000s.From 1961 to 2012,haze days in the winter half-year increased in South China,the middle-lower reaches of the Yangtze River,and North China,but decreased in Northeast China,eastern Northwest China and eastern Southwest China.The number of persistent haze is rising.The Longer the haze,the greater the proportion to the number persistent haze.Certain climatic conditions exacerbated the occurrence of haze.The correlation coefficient between haze days and precipitation days in the winter half-year is mainly negative in central-eastern China.The precipitation days show a decreasing trend in most parts of China,with a rate of around–4.0 d per decade in central-eastern China,which reduces the sedimentation capacity of atmospheric pollutants.During the period of 1961–2012,the correlation coefficients between haze days and mean wind speed and strong wind days are mainly negative in central-eastern China,while there exists positive correlation between haze days and breeze days in the winter half-year.The mean wind speed and strong wind days are decreasing,while breeze days are increasing in most parts of China,which is benefitial to the reduction of the pollutants diffusion capacity.As a result,haze occurs more easily.展开更多
Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of run...Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of runoff pollution in a rural township,a catchment(2.32 ha) in Linshan Township,Sichuan,China was selected to examine runoff and quality parameters including precipitation,flow rate,and total nitrogen(TN),dissolved nitrogen(DN),total phosphorus(TP),dissolved phosphorus(DP),particulate phosphorus(PP),chemical oxygen demand(COD) and suspended solid(SS) in 12 rainfall events occurring between June 2006 and July 2007.Results show that the annual pollutant loads were 47.17 kg ha-1 for TN,6.64 kg ha-1 for TP,1186 kg ha-1 for COD,and 4297 kg ha-1 for SS.DN and PP were the main forms of nitrogen and phosphorus in stormwater runoff.TP,COD and SS showed medium mass first flushes,in which nearly 40% of the total pollutant masses were transported by the first 30% of total flow volume.The peak of pollutant concentration appeared before the peak of runoff due to the first flush of accumulative pollutants in impervious areas and drainage ditches.The EMC values of TN,TP,DN and PP were negatively correlated to the maximum rainfall intensity,precipitation,total flow volume,and runoff duration(P<0.05,n=12),while EMC of COD and SS were not related to any rainfall characteristics.The FF30(FF,First Flush) for TN,TP,COD and SS were positively correlated to the maximum rainfall intensity(P<0.05,n=12),and TP was also positively correlated to the average rainfall intensity(P<0.05,n=12),indicating that the magnitude of first flush increased with the rainfall intensity in the Linshan Township.展开更多
The near-surface environment of the Tibetan Plateau is a fragile critical zone. Our understanding of the transport and transformation of persistent organic pollutants(POPs) in the ecosystem has significantly improved ...The near-surface environment of the Tibetan Plateau is a fragile critical zone. Our understanding of the transport and transformation of persistent organic pollutants(POPs) in the ecosystem has significantly improved with research conducted in recent decades. In the current study,POP concentrations in soils logarithmically decreased and fractionated with increasing distance from the source area,patterns attributed to air–soil exchange. Transport from soils resulted in the enrichment of POP concentrations in plants and sediments. The enantiomeric fraction indicated that transformation of POPs in soils was significantly correlated with altitude. At the same time, the chiral signature of POPs in soils was maintained from soils to sediments, while the chiral transformation from soils to plants was found to be complex.展开更多
Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze...Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze River and the Qiantangjiang River was established. The Lagrangian particle tracking was simulated to provide tracer trajectories. For convenience, the modeling area was divided into 8 subdomains and the modeling focused on March (dry season) and July (wet season). Numerical simulation and analysis indicate that the tracer trajectories originated in different subdomains are quite different. Most particles released in the mouth of the bay move outside the bay quickly and reach the farthest place at 122.5°E; while particles released in the inner part of the bay mostly remain in the same subdomain, with only minor migrations in two opposite directions along the shore. The tracer experiments also indicate that the northwest region of the bay is an area where pollutant can easily accumulate in both wet and dry seasons, and that the southeast region of the bay is another area for pollutant to accumulate in dry season because it is the main path for the contaminant.展开更多
In order to satisfy the demand of land use, reclamation engineering has been undertaken in coastal cities for a long time. To study the contaminant transport in the reclamation districts, robust and accurate estimatio...In order to satisfy the demand of land use, reclamation engineering has been undertaken in coastal cities for a long time. To study the contaminant transport in the reclamation districts, robust and accurate estimation of dispersion coefficient is essential. In this study, the continuous sodium chloride (NaC1) solution with constant concentration was introduced into the column filled with the dredger fill to get the breakthrough curves (BTCs). Inverse error function method (IEFM) and CXTFIT program were used for estimating dispersion coefficient. Results showed that the difference between the dispersion coefficients estimated by IEFM and CXTFIT program was slight. The main reason was that the BTC was not strictly linear. IEFM performed poorly in the nonlinear area, while the CXTFIT performed well over the entire BTCs. Moreover, the dispersion coefficient of dredger fill was small. The dispersion property of dredger fill would result in the slow migration of contaminants in the dredger fill.展开更多
Groundwater is the water located beneath the earth's surface in the soil pore spaces and in the fractures of rock formations. As one of the most important natural resources, groundwater is associated with the environ...Groundwater is the water located beneath the earth's surface in the soil pore spaces and in the fractures of rock formations. As one of the most important natural resources, groundwater is associated with the environment, public health, welfare, and long-term economic growth, which affects the daily activities of human beings. In modern urban areas, the primary contaminants of groundwater are artificial products, such as gasoline and diesel. To protect this important water resource, a series of efforts have been exerted, including enforcement and remedial actions. Each year, the TGPC (Texas Groundwater Protection Committee) in US publishes a "Joint Groundwater Monitoring and Contamination Report" to describe historic and new contamination cases in each county, which is an important data source for the design of prevention strategies. In this paper, a DDM (data dependent modeling) approach is proposed to predict county-level NCC (new contamination cases). A case study with contamination information from Harris County in Texas was conducted to illustrate the modeling and prediction process with promising results. The one-step prediction error is 1.5%, while the two-step error is 12.1%. The established model can be used at the county-level, state-level, and even at the country-level. Besides, the prediction results could be a reference during decision-making processes.展开更多
In acid precipitation area of Chongqing suburb the average of Hg in soil rose from 0.158 mg/kg in 1984to 0.20 mg/kg in 1989, and Hg content of crops grown on these soils increased too. Both soil and vegetableHg came m...In acid precipitation area of Chongqing suburb the average of Hg in soil rose from 0.158 mg/kg in 1984to 0.20 mg/kg in 1989, and Hg content of crops grown on these soils increased too. Both soil and vegetableHg came mainly from power plant emission, which caused Hg and acid precipitation pollution in environmentand the Hg pollution of water, crops and milk in the area.展开更多
For the geological disposal of high level radioactive wastes, an excavation damaged zone (EDZ) having high hydraulic conductivity resulting from the development of fractures in the rock adjacent to the tunnels will ...For the geological disposal of high level radioactive wastes, an excavation damaged zone (EDZ) having high hydraulic conductivity resulting from the development of fractures in the rock adjacent to the tunnels will be one of the potential pathways for radioactive contaminant transport. The potential pathways will be sealed by closure components, that is, a combination of tunnel plug, backfill and grout, the latter material being a clay-based mixture in consideration of the need for long-term stability of the seals. Clay-based grout is one of the effective candidate materials that can be used to interrupt the migration of radionuclides through an EDZ. Laboratory testing of clay-based grout using pulverized bentonite, with the objective of improvement in grout penetration into a rockmass, was conducted. The results showed that the pulverization of clay-based grout had a positive effect on filtration.展开更多
Hydropower development in Xizang(Tibet) Autonomous Region plays a vital role in co-control of local air pollutants and greenhouse gas(GHG) in China. According to emission factors of local air pollutants and GHG of coa...Hydropower development in Xizang(Tibet) Autonomous Region plays a vital role in co-control of local air pollutants and greenhouse gas(GHG) in China. According to emission factors of local air pollutants and GHG of coal-fired power industry in different hydropower service regions, we estimate the effect and synergy of local air pollutants and GHG reduction achieved by hydropower development in Tibet, examine the main factors constraining the effect and synergy, using correlation analysis and multiple regression analysis. The results show that: 1) During the period from 2006 to 2012, the effect of local air pollutants and GHG reduction achieved by hydropower development in Tibet decreased as a whole, while the synergy increased first and decreased afterwards. 2) The effect and synergy of local air pollutants and GHG reduction achieved by hydropower development in Tibet vary significantly across different hydropower service regions. The effect based on emission levels of Central China power grid(CCPG) and Northwest China power grid(NCPG) was more significant than that based on emission level of national power grid(NPG) from 2006 to 2012, and the synergy based on emission levels of CCPG and NCPG was also more significant than that based on emission level of NPG from 2010 to 2012. 3) The main factors constraining the effect and synergy based on emission levels of NCPG and CCPG included SO2 removal rate and NOx removal rate, the effect and synergy based on emission level of NPG was mainly influenced by net coal consumption rate. 4) Transferring hydropower from Tibet to NCPG and CCPG, and substituting local coal-fired power with hydropower can greatly help to co-control local air pollutants and GHG, transform the emission reduction pattern of the power industry and optimize energy structure.展开更多
Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respect...Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respecting the hydraulic conditions in the outfall to prevent sedimentation in the outfall or their accumulation in adjacent areas; also it includes the ways used to improve the outfall hydraulic capacity that decreases with time. The diagnostics and remediation procedures of mixing zones are discussed, especially in the case of previous toxic discharge that results in toxic sediments at the bed load. A literature review of techniques used to assess sediment quality near discharge points and locate effluent-affected sediment deposit is presented that include using acoustic profiles and images, chemical analysis, toxicity tests and multivariate indicators.展开更多
In this paper, the author uses super-efficiency DEA model to measure the national and regional energy efficiency in China; using spatial econometric model and from the perspective of geo-spatial spillover, the author ...In this paper, the author uses super-efficiency DEA model to measure the national and regional energy efficiency in China; using spatial econometric model and from the perspective of geo-spatial spillover, the author interprets the spatial characteristies of energy efficiency and extracts the main factors that influ- ence the regional energy efficiency. The analysis results show that: (1) the national and regional energy efficiency is consistent with inverted U-shaped curve, and the nationwide energy efficiency gap is increasing; (2) energy efficiency has the obvious effect of the spatial external effect, and when the government makes energy saving strategies, inter-regional energy cooperation and the prolif- eration of advanced production technology should be given more priority; (3) energy efficiency has significant negative correlation with government intervention, industrial structure, ownership structure, the energy consumption structure, and resource endowments, and has positive correlation with the degree of opening-up and energy price.展开更多
This paper quantifies organochlorine insecticides (OC1) inputs in the Jiulong River and shows the large use in the agricultural activities and analyses specifically the status of soil, fruit and vegetable contaminat...This paper quantifies organochlorine insecticides (OC1) inputs in the Jiulong River and shows the large use in the agricultural activities and analyses specifically the status of soil, fruit and vegetable contamination by these persistent pollutants in some locations of Xiamen region. From this purpose, soil samples collected from Jiulong agricultural catchment have been analyzed for 18 selected OCI using gas chromatography electron capture detection and to identify the factors that may control the distribution and persistence of organochlorines in the area. The main insecticides found in soil samples were Aldrin, Dieldrin, Endosulfan I1, Endrin aldehyde, Endosulfan sulphate and Methoxychlor. The total organochlorines detected in soil samples ranged from 3.14 to 10.35 ng/g soil. The highest values of OC1 were significantly detected in the orange trees' leaves, which range from 1203 to 2681 ng/g soil showing recent uses of these agrochemicals. Their distribution in vegetable samples were also monitored and indicating that the concentration ranged from 3.236 to 7.188 ng/g. The contamination of Jiulong River estuary by organochlorine pesticides has been then widely justified by soil runoffs from these agricultural areas. The results therefore, provide important information on the current contamination status and point to the need for urgent actions to stop the use of persistent agrochemicals. The necessity of implementing systematic monitoring of insecticide contamination is emphasized.展开更多
It has been studied restoration processes in oil products-polluted soils at high northern latitudes (the Murmansk region, Russia). Mineral and organic fertilizers and a bacterial preparation (based on the local str...It has been studied restoration processes in oil products-polluted soils at high northern latitudes (the Murmansk region, Russia). Mineral and organic fertilizers and a bacterial preparation (based on the local strains of hydrocarbon-oxidizing bacteria) were applied for restore polluted soils. Periods of removing OP (oil products) from soil were determined by the reduction of the pollutant concentration and by soil biological activities--the dynamics of bacteria number and CO2 emission from soil. The soil OP even at such a high concentration (as 10 L/m^2) had stimulated bacterial reproduction. In three summer month levels in the control variant without ameliorators of OP content decreased by 59% from the initial level, in the variant with mineral and organic fertilizers by 86%, in the variant with the bacterial preparation by 84%. Stimulating of indigenous microorganisms activity with additional nutrients was no less effective technique of OP-polluted soil bioremediation, than applying the bacterial preparation, which requires considerable financial investment. Moderately contaminated of OP soil is a source of additional carbon dioxide emission in the atmosphere. Pollution soil with OP caused for increasing of share of potentially pathogenic fungi in the fungal community.展开更多
A nuclear accident involving the leaking of radioactive pollutants occurred at the Fukushima Nuclear Power Plant in Japan, following an earthquake and subsequent tsunami on March 11,2011. Using official Japanese data ...A nuclear accident involving the leaking of radioactive pollutants occurred at the Fukushima Nuclear Power Plant in Japan, following an earthquake and subsequent tsunami on March 11,2011. Using official Japanese data on pollutant emissions during the accident, this study simulates the dispersion of nuclear pollutants. The source term of the nuclear leakage of radioactive material is designed using PM2.5 as the tracer of radioactive pollutants, and the study considers dry and wet deposition processes. A coupled-model system is constructed from the air-quality model Models-3/CMAQ and the Weather Research and Forecasting atmospheric model. The transport path and distribution of radioactive pollutants over long and short distances are simulated with different model horizontal resolutions of 30 and 4 km respectively. The long-distance simulation shows that, following the Fukushima nuclear accident, under the effect of westerly winds, radioactive pollutants are transported generally towards the eastern Pacific and reach the American continent after 5 days, but their concentration is only about 10-7 times the concentration near the Fukushima Nuclear Power Plant. The time required for pollutants to reach the United States is basically consistent with measurements made in California on March 18. Because the upper westerly wind is faster than the lower westerly wind, the distribution of pollutants tilts eastward in terms of its vertical structure. The short-distance (local) highresolution simulation indicates that strong winds and precipitation associated with a cyclone can accelerate the deposition, dif- fusion and transport of pollutions, and local cyclonic circulation can change the transport path of pollutants, even resulting in repeated effects of pollution in some areas. Pollutants disperse to southeastern Honshu, Japan, on March 14, 2011, agreeing well with the timing of local observations of increases in the absorbed dose rate. Results also show that radioactive pollutants from the Fukushima nuclear accident are mainly transported and diffuse eastward, resulting in a relatively short-term impact on the Japanese mainland even under the influence of the cyclone system. Therefore, in terms of atmospheric conditions, the location of the Fukusbima Nuclear Power Plant is appropriate and could serve as a reference to site selection and protection of other nuclear facilities.展开更多
The buildup of roof pollutants in an urban area of Shanghai, China was investigated by conducting 16 experiments between November 2007 and October 2008. Concentrations of Cu, Zn and Cd in runoff from three types of ro...The buildup of roof pollutants in an urban area of Shanghai, China was investigated by conducting 16 experiments between November 2007 and October 2008. Concentrations of Cu, Zn and Cd in runoff from three types of roof (concrete, aluminum and glass) exceeded USEPA National Recommended Water Quality Criteria. The solid/liquid partition of the selected metal elements was consistent for the three roof types: Al, Fe, Zn and Pb were present mainly in the particle-bound form, while the total loading of Cd was nearly 100% in the dissolved form. Atmospheric dry precipitation accounted for most of all pollutant loadings for all roof types, while roof material made only a minor contribution to the loadings. All pollutant accumulation rates except for COD showed a seasonal trend with peaks in spring (March^May) and winter (December^February) and troughs in summer (June^August) and autumn (September^November). Our results showed that a linear equation is the most reliable of commonly used buildup models to simulate the total phosphorus (TP) and total suspended solids (TSS) buildup processes on aluminum roofs and glass roofs. This study provided novel information about roof runoff in Shanghai, China, in terms of pollution status, pollution source and pollutant buildup processes, thereby aiding in rainwater utilization and non-point pollution control.展开更多
The presence of perfluorinated compounds(PFCs)in seven major wastewater treatment plants(WWTPs)in Beijing was investigated in the current study.We detected nine PFCs in all the wastewater and sludge samples.Perfluoroo...The presence of perfluorinated compounds(PFCs)in seven major wastewater treatment plants(WWTPs)in Beijing was investigated in the current study.We detected nine PFCs in all the wastewater and sludge samples.Perfluorooctane acid(PFOA)is the dominant PFCs in influents and effluents,while perfluorooctane sulfonate(PFOS)is the major contaminant in sludge.The highest PFC concentration was found in plants at Qinghe and Jiuxianqiao WWTP,while the lowest was found at Fangzhuang WWTP.The total values of PFC range from 2.88 to 176 ng/L in influents,from 5.48 to 498 ng/L in effluents,and from 1.21 to 32.0 ng/g(dry wt)in sludge.The fact that effluents usually contain higher levels of PFCs than influents suggests that additional PFCs are produced during the wastewater treatment processes.However,PFOS decreases in effluents than in influents in 62%of the water samples.This may be due to the adsorption and removal of the sludge during the active process.Perfluoroalkyl carboxylates(PFCAs)were found significantly correlated with each other in the effluents,which may indicate their similar sources or the existence of their potential precursors in the wastewater or treatment processes.The mass flows of PFC discharges into WWTPs are 0.4–51.4 mg/day,and the mass flows of PFCs in effluents exceed those in influents by 127%.Domestic and commercial wastewaters are suggested to be the major sources of PFC pollution in WWTPs in Beijing.展开更多
Aims Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils.This study aims to examine the growth,lead resistance and lead accumulat...Aims Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils.This study aims to examine the growth,lead resistance and lead accumulation of mulberry(Morus alba L.)seedlings at four levels of soil lead contamination with or without biochar addition under normal or alternative partial root-zone irrigation(APRI).Methods We conducted a three-factor greenhouse experiment with biochar(with vs.without biochar addition),irrigation method(APRI vs.normal irrigation)and four levels of soil lead(0,50,200 and 800 mg·kg^(-1)).The performance of the seedlings under different treatments was evaluated by measuring growth traits,osmotic substances,antioxidant enzymes and lead accumulation and translocation.Important Findings The results reveal that mulberry had a strong ability to acclimate to soil lead contamination,and that biochar and APRI synergistically increased the biomass and surface area of absorption root across all levels of soil lead.The seedlings were able to resist the severe soil lead contamination(800 mg·kg^(-1) Pb)by adjusting glutathione metabolism,and enhancing the osmotic and oxidative regulating capacity via increasing proline content and the peroxidase activity.Lead ions in the seedlings were primarily concentrated in roots and exhibited a dose–effect associated with the lead concentration in the soil.Pb,biochar and ARPI interactively affected Pb concentrations in leaves and roots,translocation factor and bioconcentration.Our results suggest that planting mulberry trees in combination with biochar addition and APRI can be used to effectively remediate lead-contaminated soils.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 41130750,70703033)'135' Strategic Development Planning Project of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences (No. 2012135006)
文摘The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizers and industrial wastewater. In this study, several factors were selected for evaluating and regionalizing the water environmental capacity by ArcG1S spatial analysis, including geomor- phologic characteristics, water quality goals, water body accessibility, water-dilution channels, and current water quality. Then, the spa- tial optimization of agriculture and industry was adjusted through overlay analysis, based on the balance between industrial space and water environmental capacity. The results show that the water environmental capacity gradually decreases from the west to the east, in contrast, the pollution caused by industrial and agricultural clustering is distributes along Taihu Lake, Gehu Lake and urban districts. The analysis of the agricultural space focuses on optimizing key protected areas of the Taihu Lake Basin, and the shores of Gehu Lake, optimally adjusting the second protected areas of the Taihu Lake Basin, and generally adjusting the urban areas of Changzhou and Wuxi cities. The analysis of industrial space focuses on optimizing the downtowns of Changzhou and Wuxi cities, optimally adjusting key protected areas and second protected areas of the Taihu Lake Basin, and generally adjusting the south and southwest of Gehu Lake. Lastly, some schemes of industrial and agricultural layouts and policies for the direction of industrial and agricultural development were proposed, reflecting a correlation between industry and agriculture and the water environment.
基金supported by the National Basic Research Program of China(No.2012CB955902)
文摘The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The results show that haze days occur significantly more often in eastern China than in western China.The annual number of haze days is 5–30 d in most parts of central-eastern China,with some areas experiencing more than 30 d,while less than 5 d are averagely occurring in western China.Haze days are mainly concentrated in the winter half-year,with most in winter,followed by autumn,spring,and then summer.Nearly 20%of annual haze days are experienced in December.The haze days in central-eastern China in the winter half-year have a significant increasing trend of 1.7 d per decade during 1961–2012.There were great increases in haze days in the 1960s,1970s and the beginning of the 21st century.There was also significant abrupt changes of haze days in the early 1970s and 2000s.From 1961 to 2012,haze days in the winter half-year increased in South China,the middle-lower reaches of the Yangtze River,and North China,but decreased in Northeast China,eastern Northwest China and eastern Southwest China.The number of persistent haze is rising.The Longer the haze,the greater the proportion to the number persistent haze.Certain climatic conditions exacerbated the occurrence of haze.The correlation coefficient between haze days and precipitation days in the winter half-year is mainly negative in central-eastern China.The precipitation days show a decreasing trend in most parts of China,with a rate of around–4.0 d per decade in central-eastern China,which reduces the sedimentation capacity of atmospheric pollutants.During the period of 1961–2012,the correlation coefficients between haze days and mean wind speed and strong wind days are mainly negative in central-eastern China,while there exists positive correlation between haze days and breeze days in the winter half-year.The mean wind speed and strong wind days are decreasing,while breeze days are increasing in most parts of China,which is benefitial to the reduction of the pollutants diffusion capacity.As a result,haze occurs more easily.
基金supports from the Western Development Plan of CAS (No. KZCX2-XB3-09)the Project of National Science & Technology Pillar Program (No. 2011BAD31B03)
文摘Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of runoff pollution in a rural township,a catchment(2.32 ha) in Linshan Township,Sichuan,China was selected to examine runoff and quality parameters including precipitation,flow rate,and total nitrogen(TN),dissolved nitrogen(DN),total phosphorus(TP),dissolved phosphorus(DP),particulate phosphorus(PP),chemical oxygen demand(COD) and suspended solid(SS) in 12 rainfall events occurring between June 2006 and July 2007.Results show that the annual pollutant loads were 47.17 kg ha-1 for TN,6.64 kg ha-1 for TP,1186 kg ha-1 for COD,and 4297 kg ha-1 for SS.DN and PP were the main forms of nitrogen and phosphorus in stormwater runoff.TP,COD and SS showed medium mass first flushes,in which nearly 40% of the total pollutant masses were transported by the first 30% of total flow volume.The peak of pollutant concentration appeared before the peak of runoff due to the first flush of accumulative pollutants in impervious areas and drainage ditches.The EMC values of TN,TP,DN and PP were negatively correlated to the maximum rainfall intensity,precipitation,total flow volume,and runoff duration(P<0.05,n=12),while EMC of COD and SS were not related to any rainfall characteristics.The FF30(FF,First Flush) for TN,TP,COD and SS were positively correlated to the maximum rainfall intensity(P<0.05,n=12),and TP was also positively correlated to the average rainfall intensity(P<0.05,n=12),indicating that the magnitude of first flush increased with the rainfall intensity in the Linshan Township.
基金financially supported by the Fundamental Research Funds for the Central Universities(2652014003,2652016073)State Key Laboratory of Biogeology and Environmental Geology(GBL2135,GBL21405)
文摘The near-surface environment of the Tibetan Plateau is a fragile critical zone. Our understanding of the transport and transformation of persistent organic pollutants(POPs) in the ecosystem has significantly improved with research conducted in recent decades. In the current study,POP concentrations in soils logarithmically decreased and fractionated with increasing distance from the source area,patterns attributed to air–soil exchange. Transport from soils resulted in the enrichment of POP concentrations in plants and sediments. The enantiomeric fraction indicated that transformation of POPs in soils was significantly correlated with altitude. At the same time, the chiral signature of POPs in soils was maintained from soils to sediments, while the chiral transformation from soils to plants was found to be complex.
基金Supported by National Natural Science Foundation of China (No 40576080)National High Technology Research and Development Program of China ("863" Program, No 2007AA12Z182)
文摘Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze River and the Qiantangjiang River was established. The Lagrangian particle tracking was simulated to provide tracer trajectories. For convenience, the modeling area was divided into 8 subdomains and the modeling focused on March (dry season) and July (wet season). Numerical simulation and analysis indicate that the tracer trajectories originated in different subdomains are quite different. Most particles released in the mouth of the bay move outside the bay quickly and reach the farthest place at 122.5°E; while particles released in the inner part of the bay mostly remain in the same subdomain, with only minor migrations in two opposite directions along the shore. The tracer experiments also indicate that the northwest region of the bay is an area where pollutant can easily accumulate in both wet and dry seasons, and that the southeast region of the bay is another area for pollutant to accumulate in dry season because it is the main path for the contaminant.
基金Supported by the Tianjin Research Program of Application Foundation and Advanced Technology(No.10JCZDJC24700)
文摘In order to satisfy the demand of land use, reclamation engineering has been undertaken in coastal cities for a long time. To study the contaminant transport in the reclamation districts, robust and accurate estimation of dispersion coefficient is essential. In this study, the continuous sodium chloride (NaC1) solution with constant concentration was introduced into the column filled with the dredger fill to get the breakthrough curves (BTCs). Inverse error function method (IEFM) and CXTFIT program were used for estimating dispersion coefficient. Results showed that the difference between the dispersion coefficients estimated by IEFM and CXTFIT program was slight. The main reason was that the BTC was not strictly linear. IEFM performed poorly in the nonlinear area, while the CXTFIT performed well over the entire BTCs. Moreover, the dispersion coefficient of dredger fill was small. The dispersion property of dredger fill would result in the slow migration of contaminants in the dredger fill.
文摘Groundwater is the water located beneath the earth's surface in the soil pore spaces and in the fractures of rock formations. As one of the most important natural resources, groundwater is associated with the environment, public health, welfare, and long-term economic growth, which affects the daily activities of human beings. In modern urban areas, the primary contaminants of groundwater are artificial products, such as gasoline and diesel. To protect this important water resource, a series of efforts have been exerted, including enforcement and remedial actions. Each year, the TGPC (Texas Groundwater Protection Committee) in US publishes a "Joint Groundwater Monitoring and Contamination Report" to describe historic and new contamination cases in each county, which is an important data source for the design of prevention strategies. In this paper, a DDM (data dependent modeling) approach is proposed to predict county-level NCC (new contamination cases). A case study with contamination information from Harris County in Texas was conducted to illustrate the modeling and prediction process with promising results. The one-step prediction error is 1.5%, while the two-step error is 12.1%. The established model can be used at the county-level, state-level, and even at the country-level. Besides, the prediction results could be a reference during decision-making processes.
文摘In acid precipitation area of Chongqing suburb the average of Hg in soil rose from 0.158 mg/kg in 1984to 0.20 mg/kg in 1989, and Hg content of crops grown on these soils increased too. Both soil and vegetableHg came mainly from power plant emission, which caused Hg and acid precipitation pollution in environmentand the Hg pollution of water, crops and milk in the area.
文摘For the geological disposal of high level radioactive wastes, an excavation damaged zone (EDZ) having high hydraulic conductivity resulting from the development of fractures in the rock adjacent to the tunnels will be one of the potential pathways for radioactive contaminant transport. The potential pathways will be sealed by closure components, that is, a combination of tunnel plug, backfill and grout, the latter material being a clay-based mixture in consideration of the need for long-term stability of the seals. Clay-based grout is one of the effective candidate materials that can be used to interrupt the migration of radionuclides through an EDZ. Laboratory testing of clay-based grout using pulverized bentonite, with the objective of improvement in grout penetration into a rockmass, was conducted. The results showed that the pulverization of clay-based grout had a positive effect on filtration.
基金Under the auspices of State Environmental Protection Commonweal Special Program of China(No.201209032)National Natural Science Foundation of China(No.71503118)Basic Research Foundation of National Commonweal Research Institute(No.2013012)
文摘Hydropower development in Xizang(Tibet) Autonomous Region plays a vital role in co-control of local air pollutants and greenhouse gas(GHG) in China. According to emission factors of local air pollutants and GHG of coal-fired power industry in different hydropower service regions, we estimate the effect and synergy of local air pollutants and GHG reduction achieved by hydropower development in Tibet, examine the main factors constraining the effect and synergy, using correlation analysis and multiple regression analysis. The results show that: 1) During the period from 2006 to 2012, the effect of local air pollutants and GHG reduction achieved by hydropower development in Tibet decreased as a whole, while the synergy increased first and decreased afterwards. 2) The effect and synergy of local air pollutants and GHG reduction achieved by hydropower development in Tibet vary significantly across different hydropower service regions. The effect based on emission levels of Central China power grid(CCPG) and Northwest China power grid(NCPG) was more significant than that based on emission level of national power grid(NPG) from 2006 to 2012, and the synergy based on emission levels of CCPG and NCPG was also more significant than that based on emission level of NPG from 2010 to 2012. 3) The main factors constraining the effect and synergy based on emission levels of NCPG and CCPG included SO2 removal rate and NOx removal rate, the effect and synergy based on emission level of NPG was mainly influenced by net coal consumption rate. 4) Transferring hydropower from Tibet to NCPG and CCPG, and substituting local coal-fired power with hydropower can greatly help to co-control local air pollutants and GHG, transform the emission reduction pattern of the power industry and optimize energy structure.
文摘Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respecting the hydraulic conditions in the outfall to prevent sedimentation in the outfall or their accumulation in adjacent areas; also it includes the ways used to improve the outfall hydraulic capacity that decreases with time. The diagnostics and remediation procedures of mixing zones are discussed, especially in the case of previous toxic discharge that results in toxic sediments at the bed load. A literature review of techniques used to assess sediment quality near discharge points and locate effluent-affected sediment deposit is presented that include using acoustic profiles and images, chemical analysis, toxicity tests and multivariate indicators.
基金Interim research result of 2009 Planned Projectof Social Sciences of Fujian Province (Grant No.:2009B062)
文摘In this paper, the author uses super-efficiency DEA model to measure the national and regional energy efficiency in China; using spatial econometric model and from the perspective of geo-spatial spillover, the author interprets the spatial characteristies of energy efficiency and extracts the main factors that influ- ence the regional energy efficiency. The analysis results show that: (1) the national and regional energy efficiency is consistent with inverted U-shaped curve, and the nationwide energy efficiency gap is increasing; (2) energy efficiency has the obvious effect of the spatial external effect, and when the government makes energy saving strategies, inter-regional energy cooperation and the prolif- eration of advanced production technology should be given more priority; (3) energy efficiency has significant negative correlation with government intervention, industrial structure, ownership structure, the energy consumption structure, and resource endowments, and has positive correlation with the degree of opening-up and energy price.
文摘This paper quantifies organochlorine insecticides (OC1) inputs in the Jiulong River and shows the large use in the agricultural activities and analyses specifically the status of soil, fruit and vegetable contamination by these persistent pollutants in some locations of Xiamen region. From this purpose, soil samples collected from Jiulong agricultural catchment have been analyzed for 18 selected OCI using gas chromatography electron capture detection and to identify the factors that may control the distribution and persistence of organochlorines in the area. The main insecticides found in soil samples were Aldrin, Dieldrin, Endosulfan I1, Endrin aldehyde, Endosulfan sulphate and Methoxychlor. The total organochlorines detected in soil samples ranged from 3.14 to 10.35 ng/g soil. The highest values of OC1 were significantly detected in the orange trees' leaves, which range from 1203 to 2681 ng/g soil showing recent uses of these agrochemicals. Their distribution in vegetable samples were also monitored and indicating that the concentration ranged from 3.236 to 7.188 ng/g. The contamination of Jiulong River estuary by organochlorine pesticides has been then widely justified by soil runoffs from these agricultural areas. The results therefore, provide important information on the current contamination status and point to the need for urgent actions to stop the use of persistent agrochemicals. The necessity of implementing systematic monitoring of insecticide contamination is emphasized.
文摘It has been studied restoration processes in oil products-polluted soils at high northern latitudes (the Murmansk region, Russia). Mineral and organic fertilizers and a bacterial preparation (based on the local strains of hydrocarbon-oxidizing bacteria) were applied for restore polluted soils. Periods of removing OP (oil products) from soil were determined by the reduction of the pollutant concentration and by soil biological activities--the dynamics of bacteria number and CO2 emission from soil. The soil OP even at such a high concentration (as 10 L/m^2) had stimulated bacterial reproduction. In three summer month levels in the control variant without ameliorators of OP content decreased by 59% from the initial level, in the variant with mineral and organic fertilizers by 86%, in the variant with the bacterial preparation by 84%. Stimulating of indigenous microorganisms activity with additional nutrients was no less effective technique of OP-polluted soil bioremediation, than applying the bacterial preparation, which requires considerable financial investment. Moderately contaminated of OP soil is a source of additional carbon dioxide emission in the atmosphere. Pollution soil with OP caused for increasing of share of potentially pathogenic fungi in the fungal community.
基金supported by the Special Funds of Public Welfare of China (Grant No. GYHY201306061)the National Natural Science Foundation of China (Grant Nos. 41230421, 41105065 & 41275128)
文摘A nuclear accident involving the leaking of radioactive pollutants occurred at the Fukushima Nuclear Power Plant in Japan, following an earthquake and subsequent tsunami on March 11,2011. Using official Japanese data on pollutant emissions during the accident, this study simulates the dispersion of nuclear pollutants. The source term of the nuclear leakage of radioactive material is designed using PM2.5 as the tracer of radioactive pollutants, and the study considers dry and wet deposition processes. A coupled-model system is constructed from the air-quality model Models-3/CMAQ and the Weather Research and Forecasting atmospheric model. The transport path and distribution of radioactive pollutants over long and short distances are simulated with different model horizontal resolutions of 30 and 4 km respectively. The long-distance simulation shows that, following the Fukushima nuclear accident, under the effect of westerly winds, radioactive pollutants are transported generally towards the eastern Pacific and reach the American continent after 5 days, but their concentration is only about 10-7 times the concentration near the Fukushima Nuclear Power Plant. The time required for pollutants to reach the United States is basically consistent with measurements made in California on March 18. Because the upper westerly wind is faster than the lower westerly wind, the distribution of pollutants tilts eastward in terms of its vertical structure. The short-distance (local) highresolution simulation indicates that strong winds and precipitation associated with a cyclone can accelerate the deposition, dif- fusion and transport of pollutions, and local cyclonic circulation can change the transport path of pollutants, even resulting in repeated effects of pollution in some areas. Pollutants disperse to southeastern Honshu, Japan, on March 14, 2011, agreeing well with the timing of local observations of increases in the absorbed dose rate. Results also show that radioactive pollutants from the Fukushima nuclear accident are mainly transported and diffuse eastward, resulting in a relatively short-term impact on the Japanese mainland even under the influence of the cyclone system. Therefore, in terms of atmospheric conditions, the location of the Fukusbima Nuclear Power Plant is appropriate and could serve as a reference to site selection and protection of other nuclear facilities.
基金Project supported by the National Key Technology R&D Program of China (No. 2006BAK13B04)the Expo Shanghai Sci-Tech Program of Science and Technology Commission of Shanghai (No. 06dz05808), China
文摘The buildup of roof pollutants in an urban area of Shanghai, China was investigated by conducting 16 experiments between November 2007 and October 2008. Concentrations of Cu, Zn and Cd in runoff from three types of roof (concrete, aluminum and glass) exceeded USEPA National Recommended Water Quality Criteria. The solid/liquid partition of the selected metal elements was consistent for the three roof types: Al, Fe, Zn and Pb were present mainly in the particle-bound form, while the total loading of Cd was nearly 100% in the dissolved form. Atmospheric dry precipitation accounted for most of all pollutant loadings for all roof types, while roof material made only a minor contribution to the loadings. All pollutant accumulation rates except for COD showed a seasonal trend with peaks in spring (March^May) and winter (December^February) and troughs in summer (June^August) and autumn (September^November). Our results showed that a linear equation is the most reliable of commonly used buildup models to simulate the total phosphorus (TP) and total suspended solids (TSS) buildup processes on aluminum roofs and glass roofs. This study provided novel information about roof runoff in Shanghai, China, in terms of pollution status, pollution source and pollutant buildup processes, thereby aiding in rainwater utilization and non-point pollution control.
基金the support from the National Natural Science Foundation of China(20907063,20837003&20890111)the High-Technology Research and Development Program of China(2007AA06Z405)+1 种基金Major Research Program of Chinese Academy of Sci-ences(KZCX2-YW-420-1)the National Basic Research Program of China(2009CB421605)
文摘The presence of perfluorinated compounds(PFCs)in seven major wastewater treatment plants(WWTPs)in Beijing was investigated in the current study.We detected nine PFCs in all the wastewater and sludge samples.Perfluorooctane acid(PFOA)is the dominant PFCs in influents and effluents,while perfluorooctane sulfonate(PFOS)is the major contaminant in sludge.The highest PFC concentration was found in plants at Qinghe and Jiuxianqiao WWTP,while the lowest was found at Fangzhuang WWTP.The total values of PFC range from 2.88 to 176 ng/L in influents,from 5.48 to 498 ng/L in effluents,and from 1.21 to 32.0 ng/g(dry wt)in sludge.The fact that effluents usually contain higher levels of PFCs than influents suggests that additional PFCs are produced during the wastewater treatment processes.However,PFOS decreases in effluents than in influents in 62%of the water samples.This may be due to the adsorption and removal of the sludge during the active process.Perfluoroalkyl carboxylates(PFCAs)were found significantly correlated with each other in the effluents,which may indicate their similar sources or the existence of their potential precursors in the wastewater or treatment processes.The mass flows of PFC discharges into WWTPs are 0.4–51.4 mg/day,and the mass flows of PFCs in effluents exceed those in influents by 127%.Domestic and commercial wastewaters are suggested to be the major sources of PFC pollution in WWTPs in Beijing.
基金funded by the Innovative Foundation of Mulberry and Silkworm Research Institute,Chinese Academy of Agricultural Sciences(16JK005).
文摘Aims Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils.This study aims to examine the growth,lead resistance and lead accumulation of mulberry(Morus alba L.)seedlings at four levels of soil lead contamination with or without biochar addition under normal or alternative partial root-zone irrigation(APRI).Methods We conducted a three-factor greenhouse experiment with biochar(with vs.without biochar addition),irrigation method(APRI vs.normal irrigation)and four levels of soil lead(0,50,200 and 800 mg·kg^(-1)).The performance of the seedlings under different treatments was evaluated by measuring growth traits,osmotic substances,antioxidant enzymes and lead accumulation and translocation.Important Findings The results reveal that mulberry had a strong ability to acclimate to soil lead contamination,and that biochar and APRI synergistically increased the biomass and surface area of absorption root across all levels of soil lead.The seedlings were able to resist the severe soil lead contamination(800 mg·kg^(-1) Pb)by adjusting glutathione metabolism,and enhancing the osmotic and oxidative regulating capacity via increasing proline content and the peroxidase activity.Lead ions in the seedlings were primarily concentrated in roots and exhibited a dose–effect associated with the lead concentration in the soil.Pb,biochar and ARPI interactively affected Pb concentrations in leaves and roots,translocation factor and bioconcentration.Our results suggest that planting mulberry trees in combination with biochar addition and APRI can be used to effectively remediate lead-contaminated soils.