The sodium silicate, ferric chloride, ferrous sulfate, sodium chlorate and other common inorganic materials were used to synthesize two new poly silicate iron coagulants: Polysilicate Ferric Chloride (PFSiC) and Po...The sodium silicate, ferric chloride, ferrous sulfate, sodium chlorate and other common inorganic materials were used to synthesize two new poly silicate iron coagulants: Polysilicate Ferric Chloride (PFSiC) and Polymeric Ferric Silicate Sulfate (PFSiS). Their coagulation effect on micro-polluted water was compared with the poly ferric choride (PFC) saled in the market. The results showed that turbidity, organic matter, total phosphorus, total nitrogen removal rate ofPFSiC, PFSiS coagulant were better than PFC on micro-polluted water treatment at the same dosage. The coagulation effect of PFSiC was the best. The surface morphology of three coagulants was observed by scanning electron microscopy (SEM), and the coagulation mechanism was discussed preliminarily.展开更多
To evaluate the removal efficiency of organic pollutants in the sewage by Harbin municipal sewage treatment plant, the influent and effluent samples from the plant were pretreated by liquid-liquid extraction (LLE) u...To evaluate the removal efficiency of organic pollutants in the sewage by Harbin municipal sewage treatment plant, the influent and effluent samples from the plant were pretreated by liquid-liquid extraction (LLE) under conditions of acidity, neutrality and alkaleseence in sequence, and then were analyzed by gas chromatograph-mass spectrum (GC-MS) procedures. Results indicate that there are 70 species of organic pollutants in the influent sample of the plant, which mainly consist of alkyls, benzene series, esters, and heteroeyclic compounds. Some of these organic pollutants are biotoxie and belong to persistent organic pollutants (POPs). Four species among them are on the list of Prior Pollutants of Environmental Protection Agency of USA (USEPA). However, 7 species of organic pollutants appearing in the effluent sample mainly include alkyls of multi-carbons and phthalate esters. The removal efficiency of phthalates is poor because of their poor biodegradability. The sewage treatment technique is effective in removing most+of organics pollutants.展开更多
Several microorganisms such as bacteria, fungi, Protozoa, Rotifera, cystic amoeba and algae diagnosed in activated sludge aerobic (Rustumiya treatment plant) and anaerobic reactor. Results have shown a reduction in ...Several microorganisms such as bacteria, fungi, Protozoa, Rotifera, cystic amoeba and algae diagnosed in activated sludge aerobic (Rustumiya treatment plant) and anaerobic reactor. Results have shown a reduction in the turbidity rates when using activated sludge at Rustumiya plant of 76.3 to 2.653 NTU in pre-treatment and final tank respectively, also COD (chemical oxygen demand) amount reduced from 427.263 to 82 mg/L respectively, In addition, concentrations of phosphates and nitrates decreased from 12.083 to 8.426 mg/L and 3.59 to 2.43 mg/L respectively, by removing 30.2% and 32.3% respectively of the final tank. The ratio of ammonia removing was 89.6% for ammonia, reducing process from 1358 to 140 mg/L. Furthermore, sulfates concentration decreased from 30.883 to 23.337 mg/L. However, the system in the anaerobic reactor depends on non-aerated activated sludge. Results show turbidity reduced from 12.5 to 2 NTU in pre-treatment and final tank respectively, also the COD mount reduced from 191 to 130 mg/L, the percentage removal of 31.9%. In addition phosphates, nitrates and sulfates concentrations were decreased by using activated sludge from 17.15 to 8.15, 1.2 to 0.1 and 28 to 9.2 mg/L respectively. The ammonia concentration has reduced from 1.2 to 0. i mg/L where at a removal percentage of 90.9%.展开更多
文摘The sodium silicate, ferric chloride, ferrous sulfate, sodium chlorate and other common inorganic materials were used to synthesize two new poly silicate iron coagulants: Polysilicate Ferric Chloride (PFSiC) and Polymeric Ferric Silicate Sulfate (PFSiS). Their coagulation effect on micro-polluted water was compared with the poly ferric choride (PFC) saled in the market. The results showed that turbidity, organic matter, total phosphorus, total nitrogen removal rate ofPFSiC, PFSiS coagulant were better than PFC on micro-polluted water treatment at the same dosage. The coagulation effect of PFSiC was the best. The surface morphology of three coagulants was observed by scanning electron microscopy (SEM), and the coagulation mechanism was discussed preliminarily.
文摘To evaluate the removal efficiency of organic pollutants in the sewage by Harbin municipal sewage treatment plant, the influent and effluent samples from the plant were pretreated by liquid-liquid extraction (LLE) under conditions of acidity, neutrality and alkaleseence in sequence, and then were analyzed by gas chromatograph-mass spectrum (GC-MS) procedures. Results indicate that there are 70 species of organic pollutants in the influent sample of the plant, which mainly consist of alkyls, benzene series, esters, and heteroeyclic compounds. Some of these organic pollutants are biotoxie and belong to persistent organic pollutants (POPs). Four species among them are on the list of Prior Pollutants of Environmental Protection Agency of USA (USEPA). However, 7 species of organic pollutants appearing in the effluent sample mainly include alkyls of multi-carbons and phthalate esters. The removal efficiency of phthalates is poor because of their poor biodegradability. The sewage treatment technique is effective in removing most+of organics pollutants.
文摘Several microorganisms such as bacteria, fungi, Protozoa, Rotifera, cystic amoeba and algae diagnosed in activated sludge aerobic (Rustumiya treatment plant) and anaerobic reactor. Results have shown a reduction in the turbidity rates when using activated sludge at Rustumiya plant of 76.3 to 2.653 NTU in pre-treatment and final tank respectively, also COD (chemical oxygen demand) amount reduced from 427.263 to 82 mg/L respectively, In addition, concentrations of phosphates and nitrates decreased from 12.083 to 8.426 mg/L and 3.59 to 2.43 mg/L respectively, by removing 30.2% and 32.3% respectively of the final tank. The ratio of ammonia removing was 89.6% for ammonia, reducing process from 1358 to 140 mg/L. Furthermore, sulfates concentration decreased from 30.883 to 23.337 mg/L. However, the system in the anaerobic reactor depends on non-aerated activated sludge. Results show turbidity reduced from 12.5 to 2 NTU in pre-treatment and final tank respectively, also the COD mount reduced from 191 to 130 mg/L, the percentage removal of 31.9%. In addition phosphates, nitrates and sulfates concentrations were decreased by using activated sludge from 17.15 to 8.15, 1.2 to 0.1 and 28 to 9.2 mg/L respectively. The ammonia concentration has reduced from 1.2 to 0. i mg/L where at a removal percentage of 90.9%.