A molecular dynamics simulation model is established based on the well-known Lennard-Jones 12-6 potential function to determine the surface tension of a Lennard-Jones liquid-vapor interface. The simulation is carried ...A molecular dynamics simulation model is established based on the well-known Lennard-Jones 12-6 potential function to determine the surface tension of a Lennard-Jones liquid-vapor interface. The simulation is carried out with argon as the working fluid of a given molecular number at different temperature and different truncated radius. It is found that the surface tension of a Lennard-Jones fluid is likely to be bigger for a bigger truncated radius, and tends to be constant after the truncated radius increased to a certain value. It is also found that the surface tension becomes smaller as the temperature increases.展开更多
基金Funded by the National Natural Science Foundation of China (No.50076048)
文摘A molecular dynamics simulation model is established based on the well-known Lennard-Jones 12-6 potential function to determine the surface tension of a Lennard-Jones liquid-vapor interface. The simulation is carried out with argon as the working fluid of a given molecular number at different temperature and different truncated radius. It is found that the surface tension of a Lennard-Jones fluid is likely to be bigger for a bigger truncated radius, and tends to be constant after the truncated radius increased to a certain value. It is also found that the surface tension becomes smaller as the temperature increases.