The pervaporation behavior of fermentation broth was investigated experimentally and compared with those started with ethanol mixtures. Ethanol was produced by Saccharomyces cerevisiae utilizing technical grade glucos...The pervaporation behavior of fermentation broth was investigated experimentally and compared with those started with ethanol mixtures. Ethanol was produced by Saccharomyces cerevisiae utilizing technical grade glucose and recovered by pervaporation using a composite polydimethylsiloxane (PDMS) membrane prepared in our laboratory. Ethanol concentration in fermentation broth decreased to a relatively low level when pervaporation was coupled with fermentation. The more active cells appeared in the fermentation broth, the better the membrane performance was.展开更多
The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The re...The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The results have shown that the majority of dry gas was formed during the catalytic cracking reaction of gasoline, with a small proportion of dry gas being formed through the thermal cracking reaction of gasoline. The ethylene content in dry gas formed during the catalytic cracking reaction was higher than that in dry gas formed during the thermal cracking reaction. The ethylene content in dry gas formed during catalytic cracking of gasoline with a higher olefin content was higher than that in dry gas formed during catalytic cracking of gasoline with a lower olefin content, which meant that the higher the amount of carbonium ions was produced during the reaction, the higher the ethylene content in the dry gas would be. An increasing reaction temperature could increase the percentage of dry gas formed during thermal cracking reaction in total dry gas products, leading to decreased ethylene content in the dry gas. An increasing catalyst/oil ratio could be conducive to the catalytic cracking reactions taking place inside the zeolite Y, leading to a decreased ethylene content in the dry gas. A decreasing space velocity could be conducive to the catalytic cracking reactions taking place inside the shape-selective zeolite, leading to increased ethylene content in the dry gas.展开更多
Harmless treatment of CaS from coal gas desusulfurization and other industries is of very importance for the environmental protection. In this paper, the experimental investigation of calcium sulfide regeneration with...Harmless treatment of CaS from coal gas desusulfurization and other industries is of very importance for the environmental protection. In this paper, the experimental investigation of calcium sulfide regeneration with steam at atmospheric pressure was carded out using TGA, fixed bed reactor and SEM-EDX analysis. The results show that the reaction mechanism of CaS with steam varies with temperature. The reaction occurs obviously at the temperature above 630℃ and the dominant products include CaSO4 (or CaSO3) and H2S, as the temperature is over 850℃, the primary products become CaO, SO2 and H2S. The CaS regeneration reaction will strongly depend on the temperature and the data over 900℃ can be fitted by the Shrinking-Core Model (SCM).展开更多
The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on i...The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.展开更多
基金the National Natural Science Foundation of China (No. 20176030, No. 20276041).
文摘The pervaporation behavior of fermentation broth was investigated experimentally and compared with those started with ethanol mixtures. Ethanol was produced by Saccharomyces cerevisiae utilizing technical grade glucose and recovered by pervaporation using a composite polydimethylsiloxane (PDMS) membrane prepared in our laboratory. Ethanol concentration in fermentation broth decreased to a relatively low level when pervaporation was coupled with fermentation. The more active cells appeared in the fermentation broth, the better the membrane performance was.
文摘The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The results have shown that the majority of dry gas was formed during the catalytic cracking reaction of gasoline, with a small proportion of dry gas being formed through the thermal cracking reaction of gasoline. The ethylene content in dry gas formed during the catalytic cracking reaction was higher than that in dry gas formed during the thermal cracking reaction. The ethylene content in dry gas formed during catalytic cracking of gasoline with a higher olefin content was higher than that in dry gas formed during catalytic cracking of gasoline with a lower olefin content, which meant that the higher the amount of carbonium ions was produced during the reaction, the higher the ethylene content in the dry gas would be. An increasing reaction temperature could increase the percentage of dry gas formed during thermal cracking reaction in total dry gas products, leading to decreased ethylene content in the dry gas. An increasing catalyst/oil ratio could be conducive to the catalytic cracking reactions taking place inside the zeolite Y, leading to a decreased ethylene content in the dry gas. A decreasing space velocity could be conducive to the catalytic cracking reactions taking place inside the shape-selective zeolite, leading to increased ethylene content in the dry gas.
基金Project 2002AA529080 supported by National High-Tech Research and Development Program of China (Progam 863)
文摘Harmless treatment of CaS from coal gas desusulfurization and other industries is of very importance for the environmental protection. In this paper, the experimental investigation of calcium sulfide regeneration with steam at atmospheric pressure was carded out using TGA, fixed bed reactor and SEM-EDX analysis. The results show that the reaction mechanism of CaS with steam varies with temperature. The reaction occurs obviously at the temperature above 630℃ and the dominant products include CaSO4 (or CaSO3) and H2S, as the temperature is over 850℃, the primary products become CaO, SO2 and H2S. The CaS regeneration reaction will strongly depend on the temperature and the data over 900℃ can be fitted by the Shrinking-Core Model (SCM).
基金Project(2013AA064003)supported by the National High Technology Research and Development Program of ChinaProject(2012HB008)supported by Young and Middle-aged Academic Technology Leader Backup Talent Cultivation Program in Yunnan Province,China
文摘The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.