The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of ...The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of 80-200 μm and two different environments (distilled water and hydrazine solution at temperatures from 25 to 90 ℃) were selected. The results show that the ratio of Ft/Fn is lower in distilled water than that in hydrazine solution at the same temperature in the slip regime. Both the ratio of Ft/Fn and wear volume gradually increase with increasing medium temperature under the given normal load and displacement amplitude. Besides the displacement amplitude and load, temperature also plays an important role for wear behavior of Inconel 690 material. The increase of temperature could reduce the concentration of dissolved oxygen, and promote the absorption reaction of hydrazine and dissolved oxygen. As a result, the oxidative corrosion rate is obviously lowered. Abrasive wear and delamination wear are the main mechanisms of Inconel 690 in distilled water. However, in hydrazine solution the cracks accompanied by abrasive wear and delamination wear are the main mechanisms.展开更多
An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the no...An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the novel cycle based on promising parallel flow with cooling capacity of 1 150 kW is carried out under various heat recovery generator vapor production ratios ranging from 0 to 3.5%. The life cycle saving economic analysis, for which the annual gas conservation is estimated with Bin method, is employed to prove the worthiness of extra expenditure. Results show that the optimum gas saving revenue is obtained at 2.8% heat recovery generator vapor production ratio with 42 kW exhaust heat recovered, and the system energy efficiency is improved from 1.78 to 1.83. The initial investment of exchanger can be paid back within 7 years and 9 000 CNY of gas saving revenue will be achieved over the 15-year life cycle of the machine. This technology can be easily implemented and present desirable economic effects, which is feasible to the development of triple-effect absorption cycles.展开更多
RELAP5 (reactor excursion and leak analysis program, version 5) code analyses were performed on two ROSA/LSTF (rig of safety assessment/large scale test facility) experiments on PWR (pressurized water reactor) s...RELAP5 (reactor excursion and leak analysis program, version 5) code analyses were performed on two ROSA/LSTF (rig of safety assessment/large scale test facility) experiments on PWR (pressurized water reactor) safety system that simulated cold leg small-break loss-of-coolant accidents with 8-in. or 4-in. diameter break using SG (steam generator) secondary-side depressurization. The SG depressurization was initiated by fully opening the depressurization valves in both SGs immediately after a safety injection signal. In the 8-in. break test, loop seal clearing occurred and then core uncovery and heatup took place by core boil-off. Core collapsed liquid level recovered after the initiation of accumulator coolant injection, and long-term core cooling was ensured by the actuation of low-pressure injection system. In the 4-in. break test, on the other hand, there was no core uncovery and heatup due to smaller break flow rate than in the 8-in. break test. Adjustment of Cd (break discharge coefficient) for two-phase discharge flow predicted the break flow rate reasonably well. The code well predicted the overall trend of the major thermal-hydraulic response observed in the two LSTF tests by the Cd adjustment. The code, however, overpredicted the peak cladding temperature because of underprediction of the core collapsed liquid level due to inadequate prediction of the accumulator flow rate in the 8-in. break case.展开更多
The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for ...The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for a specific power output increase The saturated steam from the reactor can have lower pressure and temperature than those of an existing PWR. In this study, the authors estimated plant performances from a heat balance model based on a conceptual design of a hybrid plant and calculated the generating costs of the proposed plant from the Japanese cost data of an existing PWR plant and an liquefied natural gas (LNG) combined cycle gas turbine plant. The generating efficiency of an oxy-fuel gas turbine plant without a nuclear steam generator is estimated to be less than 35%. Based on this efficiency, with a nuclear steam generator contributing to the power output of the proposed hybrid plant, the corresponding generating efficiency is estimated to be around 45%, even if the steam conditions are lower than in an existing PWR. The generating costs are 15-20% lower than those calculated from the weighted heat performances of both an oxy-fuel gas turbine plant without a nuclear steam generator and an existing PWR plant.展开更多
Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps, a mathematical model...Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps, a mathematical model of marine steam generator feedwater control system was developed which includes mathematical models of two steam generators and parallel turbine-driven feed pumps as well as mathematical models of feedwater pipes and feed regulating valves. The operating condition points of the parallel ttu-bine-driven feed pumps were calculated by the Chebyshev curve fit method. A water level controller for the steam generator and a rotary speed controller for the turbine-driven feed pumps were also included in the model. The accuracy of the mathematical models and their controllers was verified by comparing their results with those from a simulator.展开更多
Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level ...Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level.展开更多
A stress analysis is described for a nuclear steam generator tubesheet with a thin, or irregular ligament, associated with a mis-drilled hole using the rules of ASME (American Society of Mechanical Engineers) B & P...A stress analysis is described for a nuclear steam generator tubesheet with a thin, or irregular ligament, associated with a mis-drilled hole using the rules of ASME (American Society of Mechanical Engineers) B & PV Section Ⅲ and non-mandatory Appendix A, Article A-8000 for stresses in perforated flat plates. The analysis demonstrates the proper application of the NB-3200 rules for this special application, with discussion of the differences between an actual tube hole deviation and what is assumed in ASME Appendix A. This is a companion paper to "Technical Justification Supporting Operation with a Tube Installed in a Mis-Drilled Hole of a Steam Generator Tubesheet".展开更多
There are several elements that affect on the integrity of steam generator tubes. One of the elements is loose parts located on outside of the tubes. It causes erosion which is possible to lead fatal defect like crack...There are several elements that affect on the integrity of steam generator tubes. One of the elements is loose parts located on outside of the tubes. It causes erosion which is possible to lead fatal defect like crack on the outside surface of the tubes. In this study, artificial loose parts on Inconel 690 tube are demonstrated and eddy current testing data of the region is acquired using rotating probe. Ferromagnetic and nonmagnetic foreign materials were used to demonstrate artificial loose parts. Eddy current channel of 100 KHz frequency shows definite signals of those foreign materials but stainless steel was not clearly detected. This result can be explained based on the electrical conductivity of the materials and it can be confirmed with lissajous window and C-scan. In addition, no indication was detected when the distance of the gap between the foreign materials and the tube is increased to more than 3 mm under this test condition. Based on these experimental inspections, we were able to find suitable methods for analyzing the signals obtained under various conditions that could occur when conducting steam generator eddy current test in NPP.展开更多
A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajec...A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.展开更多
Numerical simulation of complex systems and components by computers is a fundamental phase of any modern engineering activity. The traditional methods of simulation typically entail long, iterative processes which lea...Numerical simulation of complex systems and components by computers is a fundamental phase of any modern engineering activity. The traditional methods of simulation typically entail long, iterative processes which lead to large simulation times, often exceeding transient real time. Artificial neural networks (ANNs) may be advantageous in this context, the main advantage being the speed of computation, the capability of generalizing from the few examples, robustness to noisy and partially incomplete data and the capability of performing empirical input-output mapping without complete knowledge of underlying physics. In this paper, the simulation of steam generator is considered as an example to show the potentialities of this tool. The data required for training and testing the ANN is taken from the steam generator at Abott Power Plant, Champaign (USA). The total number of samples is 9600 which are taken at a sampling time of three seconds. The performance of boiler (drum pressure, steam flow rate) has been verified and tested using ANN, under the changes in fuel flow rate, air flow rate and load disturbance. Using ANN, input-output mapping is done and it is observed that ANN allows a good reproduction of non-linear behaviors of inputs and outputs.展开更多
Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand...Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand natural renewable energy source such as solar energy and to promote energy conservation. However, in high-latitude regions, it is difficult to directly and effectively use solar power due to on insufficient amount of solar radiation. If steam can be generated from warm water at less than 373 K, it is possible to obtain steam by solar water heaters from weak solar radiation and industrial waste warm water without the consumption of any fossil fuels. In this study, the authors have been developing a system which generates steam over 423 K from warm water at less than 373 K using an adsorption heat pump with zeolite. Therefore, bench-scale equipment which generates steam continuously and the experimental results are mentioned.展开更多
Conversion of methane by steam reforming was carried out by means of dielectric-barrier discharge.A systemic procedure was employed to determine the suitable experimental conditions.It was found that one of the plasma...Conversion of methane by steam reforming was carried out by means of dielectric-barrier discharge.A systemic procedure was employed to determine the suitable experimental conditions.It was found that one of the plasma generators can match the system best.A higher power input can always bring a higher conversion,but the selectivity to C2H6 decreased from 52.48% to 39.43% as the power increased from 20W to 49W.When discharge distance was 4mm,selectivities to almost all main products reached the max.The inner electrode made of stainless steel and the outer electrode with aluminum foil were one of the best options which can obviously enhance the conversion of methane.A larger flow rate always resulted in a lower conversion of methane.In the most time,19.93% steam promoted conversion of methane.展开更多
基金Project(51075342)supported by the National Natural Science Foundation of China
文摘The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of 80-200 μm and two different environments (distilled water and hydrazine solution at temperatures from 25 to 90 ℃) were selected. The results show that the ratio of Ft/Fn is lower in distilled water than that in hydrazine solution at the same temperature in the slip regime. Both the ratio of Ft/Fn and wear volume gradually increase with increasing medium temperature under the given normal load and displacement amplitude. Besides the displacement amplitude and load, temperature also plays an important role for wear behavior of Inconel 690 material. The increase of temperature could reduce the concentration of dissolved oxygen, and promote the absorption reaction of hydrazine and dissolved oxygen. As a result, the oxidative corrosion rate is obviously lowered. Abrasive wear and delamination wear are the main mechanisms of Inconel 690 in distilled water. However, in hydrazine solution the cracks accompanied by abrasive wear and delamination wear are the main mechanisms.
基金Supported by National Natural Science Foundation of China (No. 50376044)
文摘An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the novel cycle based on promising parallel flow with cooling capacity of 1 150 kW is carried out under various heat recovery generator vapor production ratios ranging from 0 to 3.5%. The life cycle saving economic analysis, for which the annual gas conservation is estimated with Bin method, is employed to prove the worthiness of extra expenditure. Results show that the optimum gas saving revenue is obtained at 2.8% heat recovery generator vapor production ratio with 42 kW exhaust heat recovered, and the system energy efficiency is improved from 1.78 to 1.83. The initial investment of exchanger can be paid back within 7 years and 9 000 CNY of gas saving revenue will be achieved over the 15-year life cycle of the machine. This technology can be easily implemented and present desirable economic effects, which is feasible to the development of triple-effect absorption cycles.
文摘RELAP5 (reactor excursion and leak analysis program, version 5) code analyses were performed on two ROSA/LSTF (rig of safety assessment/large scale test facility) experiments on PWR (pressurized water reactor) safety system that simulated cold leg small-break loss-of-coolant accidents with 8-in. or 4-in. diameter break using SG (steam generator) secondary-side depressurization. The SG depressurization was initiated by fully opening the depressurization valves in both SGs immediately after a safety injection signal. In the 8-in. break test, loop seal clearing occurred and then core uncovery and heatup took place by core boil-off. Core collapsed liquid level recovered after the initiation of accumulator coolant injection, and long-term core cooling was ensured by the actuation of low-pressure injection system. In the 4-in. break test, on the other hand, there was no core uncovery and heatup due to smaller break flow rate than in the 8-in. break test. Adjustment of Cd (break discharge coefficient) for two-phase discharge flow predicted the break flow rate reasonably well. The code well predicted the overall trend of the major thermal-hydraulic response observed in the two LSTF tests by the Cd adjustment. The code, however, overpredicted the peak cladding temperature because of underprediction of the core collapsed liquid level due to inadequate prediction of the accumulator flow rate in the 8-in. break case.
文摘The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for a specific power output increase The saturated steam from the reactor can have lower pressure and temperature than those of an existing PWR. In this study, the authors estimated plant performances from a heat balance model based on a conceptual design of a hybrid plant and calculated the generating costs of the proposed plant from the Japanese cost data of an existing PWR plant and an liquefied natural gas (LNG) combined cycle gas turbine plant. The generating efficiency of an oxy-fuel gas turbine plant without a nuclear steam generator is estimated to be less than 35%. Based on this efficiency, with a nuclear steam generator contributing to the power output of the proposed hybrid plant, the corresponding generating efficiency is estimated to be around 45%, even if the steam conditions are lower than in an existing PWR. The generating costs are 15-20% lower than those calculated from the weighted heat performances of both an oxy-fuel gas turbine plant without a nuclear steam generator and an existing PWR plant.
文摘Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps, a mathematical model of marine steam generator feedwater control system was developed which includes mathematical models of two steam generators and parallel turbine-driven feed pumps as well as mathematical models of feedwater pipes and feed regulating valves. The operating condition points of the parallel ttu-bine-driven feed pumps were calculated by the Chebyshev curve fit method. A water level controller for the steam generator and a rotary speed controller for the turbine-driven feed pumps were also included in the model. The accuracy of the mathematical models and their controllers was verified by comparing their results with those from a simulator.
基金Project(51276023) supported by the National Natural Science Foundation of ChinaProject(09k069) supported by the Open Project Funded by Universities Innovation Platform, Hunan Province, ChinaProject(2011GK311) supported by the Office of Science and Technology of Hunan Province, China
文摘Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level.
文摘A stress analysis is described for a nuclear steam generator tubesheet with a thin, or irregular ligament, associated with a mis-drilled hole using the rules of ASME (American Society of Mechanical Engineers) B & PV Section Ⅲ and non-mandatory Appendix A, Article A-8000 for stresses in perforated flat plates. The analysis demonstrates the proper application of the NB-3200 rules for this special application, with discussion of the differences between an actual tube hole deviation and what is assumed in ASME Appendix A. This is a companion paper to "Technical Justification Supporting Operation with a Tube Installed in a Mis-Drilled Hole of a Steam Generator Tubesheet".
文摘There are several elements that affect on the integrity of steam generator tubes. One of the elements is loose parts located on outside of the tubes. It causes erosion which is possible to lead fatal defect like crack on the outside surface of the tubes. In this study, artificial loose parts on Inconel 690 tube are demonstrated and eddy current testing data of the region is acquired using rotating probe. Ferromagnetic and nonmagnetic foreign materials were used to demonstrate artificial loose parts. Eddy current channel of 100 KHz frequency shows definite signals of those foreign materials but stainless steel was not clearly detected. This result can be explained based on the electrical conductivity of the materials and it can be confirmed with lissajous window and C-scan. In addition, no indication was detected when the distance of the gap between the foreign materials and the tube is increased to more than 3 mm under this test condition. Based on these experimental inspections, we were able to find suitable methods for analyzing the signals obtained under various conditions that could occur when conducting steam generator eddy current test in NPP.
基金Projects(90820302, 60805027, 61175064) supported by the National Natural Science Foundation of ChinaProject(2011ssxt231) supported by the Master Degree Thesis Innovation Project Foundation of Central South University, China+1 种基金Project(200805330005) supported by the Research Fund for the Doctoral Program of Higher Education, ChinaProject(2011FJ4043) supported by the Academician Foundation of Hunan Province, China
文摘A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.
文摘Numerical simulation of complex systems and components by computers is a fundamental phase of any modern engineering activity. The traditional methods of simulation typically entail long, iterative processes which lead to large simulation times, often exceeding transient real time. Artificial neural networks (ANNs) may be advantageous in this context, the main advantage being the speed of computation, the capability of generalizing from the few examples, robustness to noisy and partially incomplete data and the capability of performing empirical input-output mapping without complete knowledge of underlying physics. In this paper, the simulation of steam generator is considered as an example to show the potentialities of this tool. The data required for training and testing the ANN is taken from the steam generator at Abott Power Plant, Champaign (USA). The total number of samples is 9600 which are taken at a sampling time of three seconds. The performance of boiler (drum pressure, steam flow rate) has been verified and tested using ANN, under the changes in fuel flow rate, air flow rate and load disturbance. Using ANN, input-output mapping is done and it is observed that ANN allows a good reproduction of non-linear behaviors of inputs and outputs.
文摘Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand natural renewable energy source such as solar energy and to promote energy conservation. However, in high-latitude regions, it is difficult to directly and effectively use solar power due to on insufficient amount of solar radiation. If steam can be generated from warm water at less than 373 K, it is possible to obtain steam by solar water heaters from weak solar radiation and industrial waste warm water without the consumption of any fossil fuels. In this study, the authors have been developing a system which generates steam over 423 K from warm water at less than 373 K using an adsorption heat pump with zeolite. Therefore, bench-scale equipment which generates steam continuously and the experimental results are mentioned.
基金Supported by the National iqatural Science Foundation of China (20606023, 20490203).
文摘Conversion of methane by steam reforming was carried out by means of dielectric-barrier discharge.A systemic procedure was employed to determine the suitable experimental conditions.It was found that one of the plasma generators can match the system best.A higher power input can always bring a higher conversion,but the selectivity to C2H6 decreased from 52.48% to 39.43% as the power increased from 20W to 49W.When discharge distance was 4mm,selectivities to almost all main products reached the max.The inner electrode made of stainless steel and the outer electrode with aluminum foil were one of the best options which can obviously enhance the conversion of methane.A larger flow rate always resulted in a lower conversion of methane.In the most time,19.93% steam promoted conversion of methane.