As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor ...As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.展开更多
Modern automotive petrol engine performance is significantly affected by effective tune-up. Current practice of engine tune-up relies on the experience of the automotive engineer, and tune-up is usually done by trial-...Modern automotive petrol engine performance is significantly affected by effective tune-up. Current practice of engine tune-up relies on the experience of the automotive engineer, and tune-up is usually done by trial-and-error method and then the vehicle engine is run on the dynamometer to show the actual engine performance. Obviously the current practice involves a large amount of time and money, and then may even fail to tune up the engine optimally because a formal performance model of the engine has not been determined yet. With an emerging technique, Support Vector Machines (SVM), the approximate per- formance model of a petrol vehicle engine can be determined by training the sample engine performance data acquired from the dynamometer. The number of dynamometer tests for an engine tune-up can therefore be reduced because the estimated engine performance model can replace the dynamometer tests to a certain extent. In this paper, the construction, validation and accuracy of the model are discussed. The study showed that the predicted results agree well with the actual test results. To illustrate the significance of the SVM methodology, the results were also compared with that regressed using multilayer feedforward neural networks.展开更多
文摘As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.
文摘Modern automotive petrol engine performance is significantly affected by effective tune-up. Current practice of engine tune-up relies on the experience of the automotive engineer, and tune-up is usually done by trial-and-error method and then the vehicle engine is run on the dynamometer to show the actual engine performance. Obviously the current practice involves a large amount of time and money, and then may even fail to tune up the engine optimally because a formal performance model of the engine has not been determined yet. With an emerging technique, Support Vector Machines (SVM), the approximate per- formance model of a petrol vehicle engine can be determined by training the sample engine performance data acquired from the dynamometer. The number of dynamometer tests for an engine tune-up can therefore be reduced because the estimated engine performance model can replace the dynamometer tests to a certain extent. In this paper, the construction, validation and accuracy of the model are discussed. The study showed that the predicted results agree well with the actual test results. To illustrate the significance of the SVM methodology, the results were also compared with that regressed using multilayer feedforward neural networks.