美国EPA非道路小型火花点火发动机(文中简称“发动机”)排放法规对HC+NOX和CO排放污染物规定了排放限值要求,同时要求经过认证的发动机系族要进行生产线排放测试(即Production Line Testing,PLT).本文针对排放各工况调整进行分析及化油...美国EPA非道路小型火花点火发动机(文中简称“发动机”)排放法规对HC+NOX和CO排放污染物规定了排放限值要求,同时要求经过认证的发动机系族要进行生产线排放测试(即Production Line Testing,PLT).本文针对排放各工况调整进行分析及化油器应对措施。展开更多
Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engi...Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.展开更多
Auto-ignition and heat release correlations for controlled auto-ignition(CAI)combustion were derived from extensive in-cylinder pressure data of a four-stroke gasoline engine operating in CAI combustion mode.Abundant ...Auto-ignition and heat release correlations for controlled auto-ignition(CAI)combustion were derived from extensive in-cylinder pressure data of a four-stroke gasoline engine operating in CAI combustion mode.Abundant experiments were carried out under a wide range of air/fuel ratio,speed and residual gas fraction to ensure that the combustion correlations can be used in the entire CAI engine operation range.Furthermore,a more accurate method to compute the residual gas fraction was proposed by calculating the working fluid temperature at the exhaust valve close timing in the experiments.The heat release correlation was described in two parts,one is for the first slower heat release process at low temperature,and the other is for the second faster heat release process at high temperature.Finally the heat release correlation was evaluated on the single cylinder gasoline engine running with CAI combustion by comparing the experimental data with the 1-D engine simulation results obtained with the aid of the GT-Power simulation program.The results show that the predicted loads and ignition timings match closely with the measurements.展开更多
基金Supported by National Natural Science Foundation and GM Fund (No.50322261).
文摘Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.
基金Supported by State Key Project of Fundamental Research Plan(No.2007CB210004).
文摘Auto-ignition and heat release correlations for controlled auto-ignition(CAI)combustion were derived from extensive in-cylinder pressure data of a four-stroke gasoline engine operating in CAI combustion mode.Abundant experiments were carried out under a wide range of air/fuel ratio,speed and residual gas fraction to ensure that the combustion correlations can be used in the entire CAI engine operation range.Furthermore,a more accurate method to compute the residual gas fraction was proposed by calculating the working fluid temperature at the exhaust valve close timing in the experiments.The heat release correlation was described in two parts,one is for the first slower heat release process at low temperature,and the other is for the second faster heat release process at high temperature.Finally the heat release correlation was evaluated on the single cylinder gasoline engine running with CAI combustion by comparing the experimental data with the 1-D engine simulation results obtained with the aid of the GT-Power simulation program.The results show that the predicted loads and ignition timings match closely with the measurements.