We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst comp...We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni2O/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 ℃, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni2O/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.展开更多
Recent studies confirm that the emerging bifunctional catalysts consisting of metal oxide and zeolites can directly convert syngas into high-quality gasoline,however,the formation mechanism of iso-paraffins and the di...Recent studies confirm that the emerging bifunctional catalysts consisting of metal oxide and zeolites can directly convert syngas into high-quality gasoline,however,the formation mechanism of iso-paraffins and the difference with the conventional FT/zeolite catalyst have not been investigated.Herein,three one-dimensional SAPO zeolites with diverse micropore sizes were synthesized and assembled with ZnAlO_(x)with spinel structure.It was found that ZnAlO_(x)/SAPO-41 and ZnAlO_(x)/SAPO-11 with medium micropore sizes favored the formation of C_(5)–C_(11)hydrocarbons with a high content of iso-paraffins.The characterizations pointed out that the formation of iso-paraffins over SAPO-11 followed a pore-mouth catalysis mechanism,which means the isomerization of linear hydrocarbons can only take place near the pore mouth region of zeolites.This mechanism only allows the formation of mono-branched iso-paraffins in the C_(5)–C_(11)range,which are less prone to be cracked than their di-branched isomers.A careful comparative analysis between ZnAlO_(x)/SAPO-11 and Co/H-meso-ZSM-5 was also made in terms of product distribution,activity,and stability.展开更多
The refinery of Yanshan Petrochemical Company has twice retrofitted a 2.0-Mt/a RFCC unit with the MIP-CGP technology aimed at maximization of isoparaffins/clean gasoline and increased output of propylene. By modifying...The refinery of Yanshan Petrochemical Company has twice retrofitted a 2.0-Mt/a RFCC unit with the MIP-CGP technology aimed at maximization of isoparaffins/clean gasoline and increased output of propylene. By modifying the riser reactor with addition of the second reaction zone coupled with an added external catalyst cooler outside the regenerator and adoption of the CGP catalyst to control the cracking depth the refiners have realized the target of reducing olefin content in gasoline and increasing the yield of LPG. The results of retrofitting the RFCC unit have revealed that after revamp of FCC unit the yield of LPG was increased by 7.31%, the conversion rate was increased by 9.06%, and the total liquid yield was decreased by 0.3%. After revamp of the RFCC unit the olefin content in gasoline was reduced by 19.5 v%, and the RON rating of gasoline was increased by 0.7 units to meet the demand of Beijing municipality for manufacture of the Olympic clean gasoline.展开更多
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used...This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.展开更多
The influence of active metal components of catalyst, additives and catalyst preparation method on the reactivity of catalyst for selective hydrodesulfurization (HDS) of FCC naphtha was investigated, and the RSDS-21 c...The influence of active metal components of catalyst, additives and catalyst preparation method on the reactivity of catalyst for selective hydrodesulfurization (HDS) of FCC naphtha was investigated, and the RSDS-21 catalyst with high HDS performance and the RSDS-22 catalyst with high selectivity were developed by RIPP. The composite loading of a new series of catalysts for selective HDS of FCC gasoline has demonstrated excellent desulfurization activity and selectivity and can under conventional hydrotreating conditions manufacture clean gasoline product meeting the national IV emission standard and the Euro V emission standard with less loss in antiknock index. The finalized new series of FCC catalysts upon being adopted for selective HDS of FCC naphtha have good adaptability to different feedstocks along with good stability.展开更多
To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.T...To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively.展开更多
基金ACKNOWLEDGMENTS This work is supported by the National High Tech Research and Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the General Program of the National Natural Science Foundation of China (No.50772107).
文摘We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni2O/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 ℃, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni2O/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.
文摘Recent studies confirm that the emerging bifunctional catalysts consisting of metal oxide and zeolites can directly convert syngas into high-quality gasoline,however,the formation mechanism of iso-paraffins and the difference with the conventional FT/zeolite catalyst have not been investigated.Herein,three one-dimensional SAPO zeolites with diverse micropore sizes were synthesized and assembled with ZnAlO_(x)with spinel structure.It was found that ZnAlO_(x)/SAPO-41 and ZnAlO_(x)/SAPO-11 with medium micropore sizes favored the formation of C_(5)–C_(11)hydrocarbons with a high content of iso-paraffins.The characterizations pointed out that the formation of iso-paraffins over SAPO-11 followed a pore-mouth catalysis mechanism,which means the isomerization of linear hydrocarbons can only take place near the pore mouth region of zeolites.This mechanism only allows the formation of mono-branched iso-paraffins in the C_(5)–C_(11)range,which are less prone to be cracked than their di-branched isomers.A careful comparative analysis between ZnAlO_(x)/SAPO-11 and Co/H-meso-ZSM-5 was also made in terms of product distribution,activity,and stability.
文摘The refinery of Yanshan Petrochemical Company has twice retrofitted a 2.0-Mt/a RFCC unit with the MIP-CGP technology aimed at maximization of isoparaffins/clean gasoline and increased output of propylene. By modifying the riser reactor with addition of the second reaction zone coupled with an added external catalyst cooler outside the regenerator and adoption of the CGP catalyst to control the cracking depth the refiners have realized the target of reducing olefin content in gasoline and increasing the yield of LPG. The results of retrofitting the RFCC unit have revealed that after revamp of FCC unit the yield of LPG was increased by 7.31%, the conversion rate was increased by 9.06%, and the total liquid yield was decreased by 0.3%. After revamp of the RFCC unit the olefin content in gasoline was reduced by 19.5 v%, and the RON rating of gasoline was increased by 0.7 units to meet the demand of Beijing municipality for manufacture of the Olympic clean gasoline.
文摘This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.
文摘The influence of active metal components of catalyst, additives and catalyst preparation method on the reactivity of catalyst for selective hydrodesulfurization (HDS) of FCC naphtha was investigated, and the RSDS-21 catalyst with high HDS performance and the RSDS-22 catalyst with high selectivity were developed by RIPP. The composite loading of a new series of catalysts for selective HDS of FCC gasoline has demonstrated excellent desulfurization activity and selectivity and can under conventional hydrotreating conditions manufacture clean gasoline product meeting the national IV emission standard and the Euro V emission standard with less loss in antiknock index. The finalized new series of FCC catalysts upon being adopted for selective HDS of FCC naphtha have good adaptability to different feedstocks along with good stability.
基金Project(51176014)supported by the National Natural Science Foundation of ChinaProject(2016JJ2003)supported by Natural Scienceof Hunan Province,ChinaProject(KF1605)supported by Key Laboratory of Safety Design and Reliability Technology of Engineering Vehicle in Hunan Province,China。
文摘To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively.