Ionic liquid [Et3NH]C1-FeCl3/CuCl was synthesized by mixing [Et3NH]Cl, anhydrous FeCl3 and anhydrous CuCl, and the desulfurization activity of this ionic liquid was tested. It exhibited remarkable ability in effective...Ionic liquid [Et3NH]C1-FeCl3/CuCl was synthesized by mixing [Et3NH]Cl, anhydrous FeCl3 and anhydrous CuCl, and the desulfurization activity of this ionic liquid was tested. It exhibited remarkable ability in effective desulfurization of model gasoline (thiophene in n-octane) and fluid catalytic cracking (FCC) gasoline, and the sulfur removal of thiophene in model oil (V(IL): V(oil)=0.08) could reach 93.9% in 50 min at 50 ℃. Low-sulfur (〈10 μg/g) FCC gasoline could be obtained after three extraction runs at an ionic liquid/oil volume ratio of 0.1, with the yield of FCC gasoline reaching 94.3%. The ionic liquid could be recycled 5 times with merely a slight decrease in activity.展开更多
The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The re...The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The results have shown that the majority of dry gas was formed during the catalytic cracking reaction of gasoline, with a small proportion of dry gas being formed through the thermal cracking reaction of gasoline. The ethylene content in dry gas formed during the catalytic cracking reaction was higher than that in dry gas formed during the thermal cracking reaction. The ethylene content in dry gas formed during catalytic cracking of gasoline with a higher olefin content was higher than that in dry gas formed during catalytic cracking of gasoline with a lower olefin content, which meant that the higher the amount of carbonium ions was produced during the reaction, the higher the ethylene content in the dry gas would be. An increasing reaction temperature could increase the percentage of dry gas formed during thermal cracking reaction in total dry gas products, leading to decreased ethylene content in the dry gas. An increasing catalyst/oil ratio could be conducive to the catalytic cracking reactions taking place inside the zeolite Y, leading to a decreased ethylene content in the dry gas. A decreasing space velocity could be conducive to the catalytic cracking reactions taking place inside the shape-selective zeolite, leading to increased ethylene content in the dry gas.展开更多
The FCC naphtha selective hydrodesulfurization technology(RSDS-II)has been tested with different feedstocks in pilot scale.The results show that RSDS-II technology is viable in terms of its adaptability to different f...The FCC naphtha selective hydrodesulfurization technology(RSDS-II)has been tested with different feedstocks in pilot scale.The results show that RSDS-II technology is viable in terms of its adaptability to different feedstocks.To produce gasoline with a sulfur content of less than 50μg/g by the RSDS-II technology,the gasoline RON loss is less than 1.8,0.9and 0.2 units,respectively,upon processing the conventional high-sulfur and high-olefin FCC naphtha,the high-sulfur MIP naphtha,and the medium-sulfur or low-sulfur MIP naphtha.Upon using the naphtha produced from pre-hydrotreated FCC feedstock as the RSDS-II feedstock to manufacture gasoline with a sulfur content of lower than 10μg/g,the RON loss does not exceed 1.0 unit.The RSDS-II technology has been commercialized successfully at many refineries.The result of operating commercial RSDS-II unit at the Shanghai Petrochemical Company has revealed that upon processing a feedstock containing 38.7 v% —43.3 v% of olefins and 250—470 mg/g of sulfur,the sulfur content in the treated gasoline ranges from 33μg/g to 46μg/g and the RON loss is equal to only 0.3—0.6 units.Till now this RSDS-II unit has been operating smoothly over 30 months.Thanks to its high HDS activity and good selectivity,the RSDS-II technology can meet the refinery’s needs for adequate upgrading of gasoline.展开更多
基金supported by the National Natural Science Foundation of Shanxi Educational Committee (07JK384)the Whole Innovation of Science and Technology Project Plan of Shanxi Province (2012KTD01-01-04)the Graduate Innovation Project of Northwest University (YZZ13029)
文摘Ionic liquid [Et3NH]C1-FeCl3/CuCl was synthesized by mixing [Et3NH]Cl, anhydrous FeCl3 and anhydrous CuCl, and the desulfurization activity of this ionic liquid was tested. It exhibited remarkable ability in effective desulfurization of model gasoline (thiophene in n-octane) and fluid catalytic cracking (FCC) gasoline, and the sulfur removal of thiophene in model oil (V(IL): V(oil)=0.08) could reach 93.9% in 50 min at 50 ℃. Low-sulfur (〈10 μg/g) FCC gasoline could be obtained after three extraction runs at an ionic liquid/oil volume ratio of 0.1, with the yield of FCC gasoline reaching 94.3%. The ionic liquid could be recycled 5 times with merely a slight decrease in activity.
文摘The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The results have shown that the majority of dry gas was formed during the catalytic cracking reaction of gasoline, with a small proportion of dry gas being formed through the thermal cracking reaction of gasoline. The ethylene content in dry gas formed during the catalytic cracking reaction was higher than that in dry gas formed during the thermal cracking reaction. The ethylene content in dry gas formed during catalytic cracking of gasoline with a higher olefin content was higher than that in dry gas formed during catalytic cracking of gasoline with a lower olefin content, which meant that the higher the amount of carbonium ions was produced during the reaction, the higher the ethylene content in the dry gas would be. An increasing reaction temperature could increase the percentage of dry gas formed during thermal cracking reaction in total dry gas products, leading to decreased ethylene content in the dry gas. An increasing catalyst/oil ratio could be conducive to the catalytic cracking reactions taking place inside the zeolite Y, leading to a decreased ethylene content in the dry gas. A decreasing space velocity could be conducive to the catalytic cracking reactions taking place inside the shape-selective zeolite, leading to increased ethylene content in the dry gas.
基金financially supported bu the Nationol Key Technology R&D Program of China(2007BAE43B01)and SINOPEC Corporation(contact No.106076)
文摘The FCC naphtha selective hydrodesulfurization technology(RSDS-II)has been tested with different feedstocks in pilot scale.The results show that RSDS-II technology is viable in terms of its adaptability to different feedstocks.To produce gasoline with a sulfur content of less than 50μg/g by the RSDS-II technology,the gasoline RON loss is less than 1.8,0.9and 0.2 units,respectively,upon processing the conventional high-sulfur and high-olefin FCC naphtha,the high-sulfur MIP naphtha,and the medium-sulfur or low-sulfur MIP naphtha.Upon using the naphtha produced from pre-hydrotreated FCC feedstock as the RSDS-II feedstock to manufacture gasoline with a sulfur content of lower than 10μg/g,the RON loss does not exceed 1.0 unit.The RSDS-II technology has been commercialized successfully at many refineries.The result of operating commercial RSDS-II unit at the Shanghai Petrochemical Company has revealed that upon processing a feedstock containing 38.7 v% —43.3 v% of olefins and 250—470 mg/g of sulfur,the sulfur content in the treated gasoline ranges from 33μg/g to 46μg/g and the RON loss is equal to only 0.3—0.6 units.Till now this RSDS-II unit has been operating smoothly over 30 months.Thanks to its high HDS activity and good selectivity,the RSDS-II technology can meet the refinery’s needs for adequate upgrading of gasoline.