Three ionic liquids(ILs),1-ethyl-3-methylimidazolium bromine([EMIM]Br),1-butyl-3-methylimidazolium bromine([BMIM]Br),and 1-hexyl-3-methylimidazolium bromine([HMIM]Br),were used as the solvent for separation of {tert-b...Three ionic liquids(ILs),1-ethyl-3-methylimidazolium bromine([EMIM]Br),1-butyl-3-methylimidazolium bromine([BMIM]Br),and 1-hexyl-3-methylimidazolium bromine([HMIM]Br),were used as the solvent for separation of {tert-butyl alcohol(TBA)+ water} azeotrope.Vapor–liquid equilibrium(VLE)data for {TBA + water + IL}ternary systems were measured at 101.3 k Pa.The results indicate that all the three ILs produce an obvious effect on the VLE behavior of {TBA + water} system and eliminate the azeotropy in the whole concentration range.[EMIM]Br is the best solvent for the separation of {TBA + water} system by extractive distillation among the three ILs.The experimental VLE data for the ternary systems are correlated with the NRTL model equation with good correlations.Explanations are given with activity coefficients of water and TBA,and the experimental VLE-temperature data for {TBA or water + IL} binary systems.展开更多
The vapor-liquid equilibrium(VLE) properties for the binary and ternary mixtures of CH4,C2H4 and isoC4H10 are of great importance in the recovery of ethylene from mixture containing CH4 and C2H4 with iso-C4H10 as solv...The vapor-liquid equilibrium(VLE) properties for the binary and ternary mixtures of CH4,C2H4 and isoC4H10 are of great importance in the recovery of ethylene from mixture containing CH4 and C2H4 with iso-C4H10 as solvent.Hence,Gibbs ensemble Monte Carlo(GEMC) simulations were used to estimate vapor-liquid equilibrium for the binary and ternary mixtures of CH4,C2H4 and iso-C4H10 with the united atom potential NERD model.The selected simulation conditions are based on the experiment in the literature.The results of this work were shown to be in satisfactory agreement with available experimental data and predictions of Peng-Robinson equation of state.The structure of simulated liquid phase is also characterized by radial distribution function(RDF),which contributes to further understanding of the VLE curve of these systems.RDF is not sensitive to the pressure and temperature range.With the increase of pressure or the decrease of temperature,the molecules tend to gather together.展开更多
This paper deals with a numerical analysis of the evaporation of a thin binary liquid film by forced convection inside a channel constituted by two plates.The first plate is externally insulated and wetted by a thin w...This paper deals with a numerical analysis of the evaporation of a thin binary liquid film by forced convection inside a channel constituted by two plates.The first plate is externally insulated and wetted by a thin water ethylene glycol film while the second is dry and isothermal.The first part is concerned with the effects of inlet ambiance conditions and the liquid concentration of ethylene glycol on the distribution of the velocity,temperature,concentrations profiles and the axial variation of the evaporation rate.The second part is focused on the inversion temperature point of the evaporation of binary liquid film.Results show that the inversion temperature phenomenon for the evaporation of binary liquid mixture is observed for high liquid concentration of ethylene glycol.The present results show that in the inlet temperature range considered here,the inversion temperature does not exit for the evaporation of pure ethylene glycol.展开更多
An accurate knowledge about phase behaviors of CH4, CO2 and their binary mixture is crucial in fields of natural gas liquefaction and refrigeration applications. In this work, two all-atom force fields of TraPPE-EH an...An accurate knowledge about phase behaviors of CH4, CO2 and their binary mixture is crucial in fields of natural gas liquefaction and refrigeration applications. In this work, two all-atom force fields of TraPPE-EH and EMP2 were used for the components CH4 and CO〉 respectively. Then the vapor-liquid equilibria (VLE) of CH4, CO2 and their binary system were calculated via the NVT- and NpT Gibbs Ensemble Monte Carlo Simulations. Meanwhile the traditional method using Equation of State (EoS) to correlate the VLE properties was also investigated. The EoSs considered in this work were three classic cubic RK, SRK, PR and another advanced molecular-based PC-SAFT equations. For pure components, both molecular simulations and the PC-SAFT EoS could obtain satisfactory predictions for all the saturated properties. However, the saturated liquid densities calculated by the cubic EoSs were not so good. It was also observed that the TraPPE-EH force field had a good representation for CH4 molecule, while the EMP2 force field was not enough accurate to represent CO2 molecules. For the mixture CH4 + CO2, SRK and PR showed the best predictions for the saturated pressure-component property, while good results were also obtained via molecular simulations and PC-SAFT EoS. It was suggested that special combining rules or binary interaction parameters were important to obtain enough accurate prediction of the mixed phase behavior. Compared with the cubic EoS, the PC-SAFT and molecular simulation method showed better adaptabilities for both the pure and mixture systems. Besides, the accurate molecular parameters used in the PC-SAFT and molecular simulations could bring about direct and deep understanding about the molecular characteristics.展开更多
基金Supported by the National Natural Science Foundation of China(21076126)the Program for Liaoning Excellent Talents in University(2012013)the Liaoning Province Science Foundation of China(2014020140)
文摘Three ionic liquids(ILs),1-ethyl-3-methylimidazolium bromine([EMIM]Br),1-butyl-3-methylimidazolium bromine([BMIM]Br),and 1-hexyl-3-methylimidazolium bromine([HMIM]Br),were used as the solvent for separation of {tert-butyl alcohol(TBA)+ water} azeotrope.Vapor–liquid equilibrium(VLE)data for {TBA + water + IL}ternary systems were measured at 101.3 k Pa.The results indicate that all the three ILs produce an obvious effect on the VLE behavior of {TBA + water} system and eliminate the azeotropy in the whole concentration range.[EMIM]Br is the best solvent for the separation of {TBA + water} system by extractive distillation among the three ILs.The experimental VLE data for the ternary systems are correlated with the NRTL model equation with good correlations.Explanations are given with activity coefficients of water and TBA,and the experimental VLE-temperature data for {TBA or water + IL} binary systems.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT0936)National Basic Research Program of China("973"Program,No.2009CB219905 and No.2009CB219907)
文摘The vapor-liquid equilibrium(VLE) properties for the binary and ternary mixtures of CH4,C2H4 and isoC4H10 are of great importance in the recovery of ethylene from mixture containing CH4 and C2H4 with iso-C4H10 as solvent.Hence,Gibbs ensemble Monte Carlo(GEMC) simulations were used to estimate vapor-liquid equilibrium for the binary and ternary mixtures of CH4,C2H4 and iso-C4H10 with the united atom potential NERD model.The selected simulation conditions are based on the experiment in the literature.The results of this work were shown to be in satisfactory agreement with available experimental data and predictions of Peng-Robinson equation of state.The structure of simulated liquid phase is also characterized by radial distribution function(RDF),which contributes to further understanding of the VLE curve of these systems.RDF is not sensitive to the pressure and temperature range.With the increase of pressure or the decrease of temperature,the molecules tend to gather together.
文摘This paper deals with a numerical analysis of the evaporation of a thin binary liquid film by forced convection inside a channel constituted by two plates.The first plate is externally insulated and wetted by a thin water ethylene glycol film while the second is dry and isothermal.The first part is concerned with the effects of inlet ambiance conditions and the liquid concentration of ethylene glycol on the distribution of the velocity,temperature,concentrations profiles and the axial variation of the evaporation rate.The second part is focused on the inversion temperature point of the evaporation of binary liquid film.Results show that the inversion temperature phenomenon for the evaporation of binary liquid mixture is observed for high liquid concentration of ethylene glycol.The present results show that in the inlet temperature range considered here,the inversion temperature does not exit for the evaporation of pure ethylene glycol.
基金The National Natural Science Foundation of China(Grant No.51376188)The National Basic Research Program of China("973"Project)(Grant No.2011CB710701)
文摘An accurate knowledge about phase behaviors of CH4, CO2 and their binary mixture is crucial in fields of natural gas liquefaction and refrigeration applications. In this work, two all-atom force fields of TraPPE-EH and EMP2 were used for the components CH4 and CO〉 respectively. Then the vapor-liquid equilibria (VLE) of CH4, CO2 and their binary system were calculated via the NVT- and NpT Gibbs Ensemble Monte Carlo Simulations. Meanwhile the traditional method using Equation of State (EoS) to correlate the VLE properties was also investigated. The EoSs considered in this work were three classic cubic RK, SRK, PR and another advanced molecular-based PC-SAFT equations. For pure components, both molecular simulations and the PC-SAFT EoS could obtain satisfactory predictions for all the saturated properties. However, the saturated liquid densities calculated by the cubic EoSs were not so good. It was also observed that the TraPPE-EH force field had a good representation for CH4 molecule, while the EMP2 force field was not enough accurate to represent CO2 molecules. For the mixture CH4 + CO2, SRK and PR showed the best predictions for the saturated pressure-component property, while good results were also obtained via molecular simulations and PC-SAFT EoS. It was suggested that special combining rules or binary interaction parameters were important to obtain enough accurate prediction of the mixed phase behavior. Compared with the cubic EoS, the PC-SAFT and molecular simulation method showed better adaptabilities for both the pure and mixture systems. Besides, the accurate molecular parameters used in the PC-SAFT and molecular simulations could bring about direct and deep understanding about the molecular characteristics.