为规避最小均方(Least Mean Square,LMS)算法不能同时提高收敛速度和降低稳态误差的固有缺陷,以及已有变步长LMS算法存在收敛速度慢和稳态误差估计精度差的问题,文中提出了一种基于变步长归一化频域块(Normalized Frequency-domain Bloc...为规避最小均方(Least Mean Square,LMS)算法不能同时提高收敛速度和降低稳态误差的固有缺陷,以及已有变步长LMS算法存在收敛速度慢和稳态误差估计精度差的问题,文中提出了一种基于变步长归一化频域块(Normalized Frequency-domain Block,NFB)LMS算法的汽车车内噪声主动控制方法。为了比较,应用传统的LMS算法、基于反正切函数的变步长LMS算法和变步长NFB-LMS算法分别进行实测汽车车内噪声的主动控制。结果表明,与其他两个算法相比,变步长NFB-LMS算法的收敛速度提高了70%以上,稳态误差减小了90%以上。变步长NFB-LMS算法在处理车内噪声信号时具有很高的效率,为进行汽车车内噪声主动控制提供了一种新方法。展开更多
文摘为规避最小均方(Least Mean Square,LMS)算法不能同时提高收敛速度和降低稳态误差的固有缺陷,以及已有变步长LMS算法存在收敛速度慢和稳态误差估计精度差的问题,文中提出了一种基于变步长归一化频域块(Normalized Frequency-domain Block,NFB)LMS算法的汽车车内噪声主动控制方法。为了比较,应用传统的LMS算法、基于反正切函数的变步长LMS算法和变步长NFB-LMS算法分别进行实测汽车车内噪声的主动控制。结果表明,与其他两个算法相比,变步长NFB-LMS算法的收敛速度提高了70%以上,稳态误差减小了90%以上。变步长NFB-LMS算法在处理车内噪声信号时具有很高的效率,为进行汽车车内噪声主动控制提供了一种新方法。