This paper presents a method using range deception jamming to evaluate the safety performance of the autonomous vehicle with millimetre wave(MMW)radar.The working principle of this method is described.Combined with a ...This paper presents a method using range deception jamming to evaluate the safety performance of the autonomous vehicle with millimetre wave(MMW)radar.The working principle of this method is described.Combined with a waveform edition software,an experimental platform is developed to generate a deceptive signal that contains false distance information.According to related theories and its principle,the configuration parameters of the experimental setup are calculated and configured.The MMW radar of evaluated vehicle should identify an objective when it receives the deceptive signal from the experimental setup.Even if no obstacle,the evaluated vehicle can immediately brake in order that its braking distance is measured.The experimental results show that the proposed method can meet the requirements of the safety performance evaluation for the autonomous vehicle with MMW radar,and it also overcomes some deficiencies of previous methods.展开更多
A control allocation algorithm based on pseudo-inverse method was proposed for the over-actuated system of four in-wheel motors independently driving and four-wheel steering-by-wire electric vehicles in order to impro...A control allocation algorithm based on pseudo-inverse method was proposed for the over-actuated system of four in-wheel motors independently driving and four-wheel steering-by-wire electric vehicles in order to improve the vehicle stability. The control algorithm was developed using a two-degree-of-freedom(DOF) vehicle model. A pseudo control vector was calculated by a sliding mode controller to minimize the difference between the desired and actual vehicle motions. A pseudo-inverse controller then allocated the control inputs which included driving torques and steering angles of the four wheels according to the pseudo control vector. If one or more actuators were saturated or in a failure state, the control inputs are re-allocated by the algorithm. The algorithm was evaluated in Matlab/Simulink by using an 8-DOF nonlinear vehicle model. Simulations of sinusoidal input maneuver and double lane change maneuver were executed and the results were compared with those for a sliding mode control. The simulation results show that the vehicle controlled by the control allocation algorithm has better stability and trajectory-tracking performance than the vehicle controlled by the sliding mode control. The vehicle controlled by the control allocation algorithm still has good handling and stability when one or more actuators are saturated or in a failure situation.展开更多
基金National Natural Science Foundation of China(No.61471289)Natural Science Foundation of Shaanxi Province of China(No.2015JM5189)。
文摘This paper presents a method using range deception jamming to evaluate the safety performance of the autonomous vehicle with millimetre wave(MMW)radar.The working principle of this method is described.Combined with a waveform edition software,an experimental platform is developed to generate a deceptive signal that contains false distance information.According to related theories and its principle,the configuration parameters of the experimental setup are calculated and configured.The MMW radar of evaluated vehicle should identify an objective when it receives the deceptive signal from the experimental setup.Even if no obstacle,the evaluated vehicle can immediately brake in order that its braking distance is measured.The experimental results show that the proposed method can meet the requirements of the safety performance evaluation for the autonomous vehicle with MMW radar,and it also overcomes some deficiencies of previous methods.
基金Project(51175015)supported by the National Natural Science Foundation of ChinaProject(2012AA110904)supported by the National High Technology Research and Development Program of China
文摘A control allocation algorithm based on pseudo-inverse method was proposed for the over-actuated system of four in-wheel motors independently driving and four-wheel steering-by-wire electric vehicles in order to improve the vehicle stability. The control algorithm was developed using a two-degree-of-freedom(DOF) vehicle model. A pseudo control vector was calculated by a sliding mode controller to minimize the difference between the desired and actual vehicle motions. A pseudo-inverse controller then allocated the control inputs which included driving torques and steering angles of the four wheels according to the pseudo control vector. If one or more actuators were saturated or in a failure state, the control inputs are re-allocated by the algorithm. The algorithm was evaluated in Matlab/Simulink by using an 8-DOF nonlinear vehicle model. Simulations of sinusoidal input maneuver and double lane change maneuver were executed and the results were compared with those for a sliding mode control. The simulation results show that the vehicle controlled by the control allocation algorithm has better stability and trajectory-tracking performance than the vehicle controlled by the sliding mode control. The vehicle controlled by the control allocation algorithm still has good handling and stability when one or more actuators are saturated or in a failure situation.