To obtain a good drivability and high efficiency of the micro-electric vehicle, a new driving in-wheel motor design was analyzed and optimized. Maxwell software was used to build finite element simulation model of the...To obtain a good drivability and high efficiency of the micro-electric vehicle, a new driving in-wheel motor design was analyzed and optimized. Maxwell software was used to build finite element simulation model of the driving in-wheel motor. The basic features and starting process were analyzed by field-circuit coupled finite element method. The internal complicated magnetic field distribution and dynamic performance simulation were obtained in different positions. No-load and load characteristics of the driving in-wheel motor was simulated, and the power consumption of materials was computed. The conformity of the final simulation results with the experimental data indicates that this method can be used to provide a theoretical basis to make further optimal design of this new driving in-wheel motor and its control system, so as to improve the starting torque and reduce torque ripple of the motor. This method can shorten the development cycle of in-wheel motors and save development costs, which has a wide range of engineering application value.展开更多
In this paper, variation of wheel-rail forces in dynamic train-track interaction at high speed track is investigated. To analyze track and train dynamically, a model of standard fleet and train is provided. To model t...In this paper, variation of wheel-rail forces in dynamic train-track interaction at high speed track is investigated. To analyze track and train dynamically, a model of standard fleet and train is provided. To model the loads of track and train realistically, ADAMS / RAIL software is used. In modeling of a car by ADAMS / RAIL, an ERRI standard model of the car on a high speed track with corrugated rail (1 mm amplitude, 1 meter wavelength and total length of 5 meters) is provided. To verify the equations of dynamic load factors, offered in some codes, the software outputs and equations are compared to judge. The results of the dynamic analysis of the train shows that the equations offered in ORE manual are more applicable than those offered in the other codes.展开更多
基金Project(CSTC2009AC6051) supported by Ministry of Major Science & Technology of Chongqing, ChinaProject(CDJXS12110010) supported by the Fundamental Research Funds for the Central Universities, China
文摘To obtain a good drivability and high efficiency of the micro-electric vehicle, a new driving in-wheel motor design was analyzed and optimized. Maxwell software was used to build finite element simulation model of the driving in-wheel motor. The basic features and starting process were analyzed by field-circuit coupled finite element method. The internal complicated magnetic field distribution and dynamic performance simulation were obtained in different positions. No-load and load characteristics of the driving in-wheel motor was simulated, and the power consumption of materials was computed. The conformity of the final simulation results with the experimental data indicates that this method can be used to provide a theoretical basis to make further optimal design of this new driving in-wheel motor and its control system, so as to improve the starting torque and reduce torque ripple of the motor. This method can shorten the development cycle of in-wheel motors and save development costs, which has a wide range of engineering application value.
文摘In this paper, variation of wheel-rail forces in dynamic train-track interaction at high speed track is investigated. To analyze track and train dynamically, a model of standard fleet and train is provided. To model the loads of track and train realistically, ADAMS / RAIL software is used. In modeling of a car by ADAMS / RAIL, an ERRI standard model of the car on a high speed track with corrugated rail (1 mm amplitude, 1 meter wavelength and total length of 5 meters) is provided. To verify the equations of dynamic load factors, offered in some codes, the software outputs and equations are compared to judge. The results of the dynamic analysis of the train shows that the equations offered in ORE manual are more applicable than those offered in the other codes.