Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a larg...Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a large number of control and regulation parameters in the ECU software. The ultimate objective of calibration work is the optimum determination of these parameters. Qualitatively excellent results can only be achieved in a shorter time by using a highly efficient calibration system. This paper provided an overview of a new calibration tool based on KWP2000 and gave an example calibration with this tool.展开更多
For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and...For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and noise for car body panels is useful for engineering.Analysis and active control of booming noise in car is researched by using a new active damping vibration reduction technology named smart constrained layer damping(SCLD).According to the vibration characters of body roof,an optimal placement of actuators is distributed.Based on dSPACE hardware in loop environment,an adaptive active control system is designed.Selecting vibration signals of engine mounting point as the reference input of adaptive controller,an active control experiment of booming noise for mini-car is carried out.Experimental results show that,when the engine speed is at 3700 RPM and4250RPM,the interior booming noise decreases 4.2dB(A),and 3.5dB(A) separately.It proposes new methods and techniques for intelligent control of car body NVH in the future.展开更多
This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the st...This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.展开更多
文摘Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a large number of control and regulation parameters in the ECU software. The ultimate objective of calibration work is the optimum determination of these parameters. Qualitatively excellent results can only be achieved in a shorter time by using a highly efficient calibration system. This paper provided an overview of a new calibration tool based on KWP2000 and gave an example calibration with this tool.
基金Supported by the State Key Development Program for Basic Research of China(No.2010CB736104)the National High Technology Research and Development Program of China(No.2012AA111803)
文摘For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and noise for car body panels is useful for engineering.Analysis and active control of booming noise in car is researched by using a new active damping vibration reduction technology named smart constrained layer damping(SCLD).According to the vibration characters of body roof,an optimal placement of actuators is distributed.Based on dSPACE hardware in loop environment,an adaptive active control system is designed.Selecting vibration signals of engine mounting point as the reference input of adaptive controller,an active control experiment of booming noise for mini-car is carried out.Experimental results show that,when the engine speed is at 3700 RPM and4250RPM,the interior booming noise decreases 4.2dB(A),and 3.5dB(A) separately.It proposes new methods and techniques for intelligent control of car body NVH in the future.
文摘This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.