This paper has investigated the influence of gasoline sulfur content on durability of catalytic converter for vehicle exhaust gas. Two gasoline samples with different sulfur contents (equating to 150 μg/g and 50 μg/...This paper has investigated the influence of gasoline sulfur content on durability of catalytic converter for vehicle exhaust gas. Two gasoline samples with different sulfur contents (equating to 150 μg/g and 50 μg/g of sulfur, respectively) were used to examine the durability and performance of catalytic converter on the bench test. The test results have revealed that in comparison to the influence of sulfur on ageing of catalytic converter the thermal ageing had a more remarkable impact on the performance of catalytic converter, and the performance of catalytic converter could be restored by high-temperature desulfurization process after ageing by the high-sulfur gasoline sample (containing 150 μg/g of sulfur) .展开更多
Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of b...Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of biogenic and anthropogenic volatile organic compounds(VOCs), the influence of NH3 on particle formation from complex mixtures such as vehicle exhausts is still poorly understood. Here we directly introduced gasoline vehicles exhausts(GVE) into a smog chamber with NH3 absorbed by denuders to examine the role of NH3 in particle formation from GVE. We found that removing NH3 from GVE would greatly suppress the formation and growth of particles. Adding NH3 into the reactor after 3 h photo-oxidation of GVE, the particle number concentration and mass concentrations jumped explosively to much higher levels, indicating that the numbers and mass of particles might be enhanced when aged vehicle exhausts are transported to rural areas and mixed with NH3-rich plumes. We also found that the presence of NH3 had no significant influence on SOA formation from GVE. Very similar oxygen to carbon(O:C) and hydrogen to carbon(H:C) ratios resolved by aerosol mass spectrometer with and without NH3 indicated that the presence of NH3 also had no impact on the average carbon oxidation state of SOA from GVE.展开更多
文摘This paper has investigated the influence of gasoline sulfur content on durability of catalytic converter for vehicle exhaust gas. Two gasoline samples with different sulfur contents (equating to 150 μg/g and 50 μg/g of sulfur, respectively) were used to examine the durability and performance of catalytic converter on the bench test. The test results have revealed that in comparison to the influence of sulfur on ageing of catalytic converter the thermal ageing had a more remarkable impact on the performance of catalytic converter, and the performance of catalytic converter could be restored by high-temperature desulfurization process after ageing by the high-sulfur gasoline sample (containing 150 μg/g of sulfur) .
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB05010200)the National Natural Science Foundation of China(41025012/41121063)+1 种基金NSFC-Guangdong Joint Funds(U0833003)the Guangzhou Institute of Geochemistry(GIGCAS 135 Project Y234161001)
文摘Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of biogenic and anthropogenic volatile organic compounds(VOCs), the influence of NH3 on particle formation from complex mixtures such as vehicle exhausts is still poorly understood. Here we directly introduced gasoline vehicles exhausts(GVE) into a smog chamber with NH3 absorbed by denuders to examine the role of NH3 in particle formation from GVE. We found that removing NH3 from GVE would greatly suppress the formation and growth of particles. Adding NH3 into the reactor after 3 h photo-oxidation of GVE, the particle number concentration and mass concentrations jumped explosively to much higher levels, indicating that the numbers and mass of particles might be enhanced when aged vehicle exhausts are transported to rural areas and mixed with NH3-rich plumes. We also found that the presence of NH3 had no significant influence on SOA formation from GVE. Very similar oxygen to carbon(O:C) and hydrogen to carbon(H:C) ratios resolved by aerosol mass spectrometer with and without NH3 indicated that the presence of NH3 also had no impact on the average carbon oxidation state of SOA from GVE.