The tire mark is the important legacy information left at the accident scene. Based on the vehicle collision dynamics model, this study provided an optimized algorithm with vehicle final location and other related inf...The tire mark is the important legacy information left at the accident scene. Based on the vehicle collision dynamics model, this study provided an optimized algorithm with vehicle final location and other related information for the tire marks. When the tire marks simulation results fit the real one well, the state of vehicle can be understood as the real state in the accident. Based on above, the vehicle velocity and direction are decided. According to the velocity and direction of the vehicle, the complete accident process can be simulated. With the help of the Pc-Crash software, the method has been applied in typical collision accident cases analysis. The reconstruction results will provide the scientific and numerical references for vehicle collision accidents analyzing and appraising.展开更多
Vehicle crashworthiness simulation is the main component of the virtual auto-body design. One developing commercial vehicle was simulated on crashworthiness by the non-linear finite element method. The bumper crashwor...Vehicle crashworthiness simulation is the main component of the virtual auto-body design. One developing commercial vehicle was simulated on crashworthiness by the non-linear finite element method. The bumper crashworthiness at the speed of 8 km/h was analyzed and valuated. On the other hand, the deformation of the auto-body, the movement of the steering wheel and the dynamic responses of the occupant at the initial velocity of 50 km/h were studied. The results appear that the design of the vehicle could be improved on structure and material. Finally, the frontal longitudinal beam, the main energy-absorbing part of the auto-body, was optimized on structure. Simulation results also show that applying new material, such as high strength steel, and new manufacture techniques, such as tailor-welded blanks could improve the crashworthiness of the vehicle greatly.展开更多
An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular dri...An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular driver airhag from the perspective of reducing the dosage of gas generant, Three different dummies were selected for computer simulation to investigate the stiffness and protection performance of the new airhag, Next, a multi-objective optimization of the 50th percentile dummy was conducted, The results show that the static volume of the new airhag is only about 113 of the volume of an ordinary one, and the injury value of each type of dummy can meet legal requirements while reducing the gas dosage by at least 30%, The combined injury index (Pcomb) decreases by 22% and the gas dosage is reduced by 32% after optimization, This study demonstrates that the new tubular driver airbag has great potential for protection in terms of reducing the gas dosage,展开更多
In this paper the optimal model of the main energy absorbed structure in an auto-body “front rail”, based on structural crashworthiness is built. For an optimal design on structure crashworthiness, the new method is...In this paper the optimal model of the main energy absorbed structure in an auto-body “front rail”, based on structural crashworthiness is built. For an optimal design on structure crashworthiness, the new method is based on a response surface model and Pareto GA, which improves the efficiency and flexibility of an optimal design, that is brought forward. The traditional optimal method can not be applied in the design of an impact structure due to the high nonlinearity and large time cost of crashworthiness FE analysis. So the method of an optimal design based on crashworthiness is brought forward. After constructing the response surface model of auto-body crashworthiness, the Pareto GA can be applied to find the multi-objective globally. The optimal solution set can then be used to provide many scheme combinations for choice structural parameters.To acquire the optimized structure parameters on front rail crashworthiness, this simplified model of an original design is built. After studying various ways of reinforcing the cross-section to control the structural failure mode, a better method has been found. On the precondition of not increasing the mass of the structure, an optimal design of the front rail is performed further. Finally, the optimized scheme is implemented in the full-car impact analysis and crashworthiness is studied. With proper measures to control deformation of the front rail structure the crashworthiness can be improved with minor structural modifications.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.60174023)the National High Technology Research and Development Program of China(Grant No.863 -2007AA11Z234).
文摘The tire mark is the important legacy information left at the accident scene. Based on the vehicle collision dynamics model, this study provided an optimized algorithm with vehicle final location and other related information for the tire marks. When the tire marks simulation results fit the real one well, the state of vehicle can be understood as the real state in the accident. Based on above, the vehicle velocity and direction are decided. According to the velocity and direction of the vehicle, the complete accident process can be simulated. With the help of the Pc-Crash software, the method has been applied in typical collision accident cases analysis. The reconstruction results will provide the scientific and numerical references for vehicle collision accidents analyzing and appraising.
文摘Vehicle crashworthiness simulation is the main component of the virtual auto-body design. One developing commercial vehicle was simulated on crashworthiness by the non-linear finite element method. The bumper crashworthiness at the speed of 8 km/h was analyzed and valuated. On the other hand, the deformation of the auto-body, the movement of the steering wheel and the dynamic responses of the occupant at the initial velocity of 50 km/h were studied. The results appear that the design of the vehicle could be improved on structure and material. Finally, the frontal longitudinal beam, the main energy-absorbing part of the auto-body, was optimized on structure. Simulation results also show that applying new material, such as high strength steel, and new manufacture techniques, such as tailor-welded blanks could improve the crashworthiness of the vehicle greatly.
文摘An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular driver airhag from the perspective of reducing the dosage of gas generant, Three different dummies were selected for computer simulation to investigate the stiffness and protection performance of the new airhag, Next, a multi-objective optimization of the 50th percentile dummy was conducted, The results show that the static volume of the new airhag is only about 113 of the volume of an ordinary one, and the injury value of each type of dummy can meet legal requirements while reducing the gas dosage by at least 30%, The combined injury index (Pcomb) decreases by 22% and the gas dosage is reduced by 32% after optimization, This study demonstrates that the new tubular driver airbag has great potential for protection in terms of reducing the gas dosage,
文摘In this paper the optimal model of the main energy absorbed structure in an auto-body “front rail”, based on structural crashworthiness is built. For an optimal design on structure crashworthiness, the new method is based on a response surface model and Pareto GA, which improves the efficiency and flexibility of an optimal design, that is brought forward. The traditional optimal method can not be applied in the design of an impact structure due to the high nonlinearity and large time cost of crashworthiness FE analysis. So the method of an optimal design based on crashworthiness is brought forward. After constructing the response surface model of auto-body crashworthiness, the Pareto GA can be applied to find the multi-objective globally. The optimal solution set can then be used to provide many scheme combinations for choice structural parameters.To acquire the optimized structure parameters on front rail crashworthiness, this simplified model of an original design is built. After studying various ways of reinforcing the cross-section to control the structural failure mode, a better method has been found. On the precondition of not increasing the mass of the structure, an optimal design of the front rail is performed further. Finally, the optimized scheme is implemented in the full-car impact analysis and crashworthiness is studied. With proper measures to control deformation of the front rail structure the crashworthiness can be improved with minor structural modifications.