The most conventional vehicle pretensioner system consists of an internal gear pair with involute teeth. However, it has been well known that the corresponding gear pairs are relatively weak under the situation of imp...The most conventional vehicle pretensioner system consists of an internal gear pair with involute teeth. However, it has been well known that the corresponding gear pairs are relatively weak under the situation of impact loadings. To improve this phenomenon, a new pretensioning gear system with cycloid teeth rather than the involute ones was proposed, and dual cycloidal gear mechanisms were designed for satisfying geometric constraints and dynamic loading conditions. The simulations of the prototypes were conducted by LS-DYNA program and the experiments for a prototype were performed for a dynamic model with impact loading devices. The results show that the better operation and the smoother motion are confirmed in the proposed cycloidal gear system rather than the conventional one without interferences between gear teeth under the impact of a crash.展开更多
The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the ...The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.展开更多
This paper explores the potential meanings of battery electric vehicles (battery EVs). Relevant ideas were collated through facilitated exchange of explicated and tacit knowledge, realized by individual essay prepar...This paper explores the potential meanings of battery electric vehicles (battery EVs). Relevant ideas were collated through facilitated exchange of explicated and tacit knowledge, realized by individual essay preparation and a facilitated seminar workshop. Additional classifications and clustering by the author led to the following principal results: the EV as a power source and buffer forms the foundation for most meanings beyond transport. EVs can act both in the context of"shelters" for individuals as well as "community vehicles" with a focus on, e.g., local renewable energy production integration. Reduced to a simple product, EVs can also be designed to make sense in developing country environments. However, many "intelligent" features associated to EVs are available also for combustion engine vehicles and thus provide only necessary, but not unique added value to EVs. Concluding, EVs will take over market share from internal combustion vehicles only if they satisfy human needs beyond mobility.展开更多
基金supported by the Changwon National University in 2011-2012,Korea
文摘The most conventional vehicle pretensioner system consists of an internal gear pair with involute teeth. However, it has been well known that the corresponding gear pairs are relatively weak under the situation of impact loadings. To improve this phenomenon, a new pretensioning gear system with cycloid teeth rather than the involute ones was proposed, and dual cycloidal gear mechanisms were designed for satisfying geometric constraints and dynamic loading conditions. The simulations of the prototypes were conducted by LS-DYNA program and the experiments for a prototype were performed for a dynamic model with impact loading devices. The results show that the better operation and the smoother motion are confirmed in the proposed cycloidal gear system rather than the conventional one without interferences between gear teeth under the impact of a crash.
文摘The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.
文摘This paper explores the potential meanings of battery electric vehicles (battery EVs). Relevant ideas were collated through facilitated exchange of explicated and tacit knowledge, realized by individual essay preparation and a facilitated seminar workshop. Additional classifications and clustering by the author led to the following principal results: the EV as a power source and buffer forms the foundation for most meanings beyond transport. EVs can act both in the context of"shelters" for individuals as well as "community vehicles" with a focus on, e.g., local renewable energy production integration. Reduced to a simple product, EVs can also be designed to make sense in developing country environments. However, many "intelligent" features associated to EVs are available also for combustion engine vehicles and thus provide only necessary, but not unique added value to EVs. Concluding, EVs will take over market share from internal combustion vehicles only if they satisfy human needs beyond mobility.