期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进型卷积网络的汽车高度调节器缺陷检测方法
被引量:
13
1
作者
鲍光海
林善银
徐林森
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2020年第2期157-165,共9页
针对汽车高度调节器生产中人工缺陷检测耗时耗力和传统诊断方法适用性差的问题,运用深度学习提出了一种基于改进型卷积网络的智能检测方法。该方法利用卷积网络提取特征,并且在网络中加入残差网络结构和可分离卷积,在深层网络提高精度...
针对汽车高度调节器生产中人工缺陷检测耗时耗力和传统诊断方法适用性差的问题,运用深度学习提出了一种基于改进型卷积网络的智能检测方法。该方法利用卷积网络提取特征,并且在网络中加入残差网络结构和可分离卷积,在深层网络提高精度的同时减少了参数计算量。改进的结构主要运用卷积层、池化层、批标准化层、softmax层,并引入残差网络结构和可分离卷积。实验结果表明,基于改进型卷积网络的汽车高度调节器缺陷检测方法有着良好的识别精度,在汽车高度调节器多类缺陷的检测实验中,准确率均在99%以上,优于经典卷积网络VGG16。
展开更多
关键词
深度学习
改进型卷积网络
残差网络
汽车高度调节器
缺陷检测
下载PDF
职称材料
题名
基于改进型卷积网络的汽车高度调节器缺陷检测方法
被引量:
13
1
作者
鲍光海
林善银
徐林森
机构
福州大学电气工程与自动化学院
福州大学新能源发电与电能变换福建省高校重点实验室
慈溪亚路车辆配件有限公司
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2020年第2期157-165,共9页
基金
福建省科技计划项目(2018H0014)资助.
文摘
针对汽车高度调节器生产中人工缺陷检测耗时耗力和传统诊断方法适用性差的问题,运用深度学习提出了一种基于改进型卷积网络的智能检测方法。该方法利用卷积网络提取特征,并且在网络中加入残差网络结构和可分离卷积,在深层网络提高精度的同时减少了参数计算量。改进的结构主要运用卷积层、池化层、批标准化层、softmax层,并引入残差网络结构和可分离卷积。实验结果表明,基于改进型卷积网络的汽车高度调节器缺陷检测方法有着良好的识别精度,在汽车高度调节器多类缺陷的检测实验中,准确率均在99%以上,优于经典卷积网络VGG16。
关键词
深度学习
改进型卷积网络
残差网络
汽车高度调节器
缺陷检测
Keywords
deep learning
improved convolution network
residual network
vehicle height regulator
defect detection
分类号
U472 [机械工程—车辆工程]
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进型卷积网络的汽车高度调节器缺陷检测方法
鲍光海
林善银
徐林森
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2020
13
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部