Synaptic devices that merge memory and processing functions into one unit have broad application potentials in neuromorphic computing, soft robots, and humanmachine interfaces. However, most previously reported synapt...Synaptic devices that merge memory and processing functions into one unit have broad application potentials in neuromorphic computing, soft robots, and humanmachine interfaces. However, most previously reported synaptic devices exhibit fixed performance once been fabricated,which limits their application in diverse scenarios. Here, we report floating-gate photosensitive synaptic transistors with charge-trapping perovskite quantum dots(PQDs) and atomic layer deposited(ALD) Al_(2)O_(3) tunneling layers, which exhibit typical synaptic behaviors including excitatory postsynaptic current(EPSC), pair-pulse facilitation and dynamic filtering characteristics under both electrical or optical signal stimulation. Further, the combination of the high-quality Al2O3 tuning layer and highly photosensitive PQDs charge-trapping layer provides the devices with extensively tunable synaptic performance under optical and electrical co-modulation. Applying light during electrical modulation can significantly improve both the synaptic weight changes and the nonlinearity of weight updates, while the memory effect under light modulation can be obviously adjusted by the gate voltage.The pattern learning and forgetting processes for "0" and "1"with different synaptic weights and memory times are further demonstrated in the device array. Overall, this work provides synaptic devices with tunable functions for building complex and robust artificial neural networks.展开更多
基金supported by the National Natural Science Foundation of China (61874029)。
文摘Synaptic devices that merge memory and processing functions into one unit have broad application potentials in neuromorphic computing, soft robots, and humanmachine interfaces. However, most previously reported synaptic devices exhibit fixed performance once been fabricated,which limits their application in diverse scenarios. Here, we report floating-gate photosensitive synaptic transistors with charge-trapping perovskite quantum dots(PQDs) and atomic layer deposited(ALD) Al_(2)O_(3) tunneling layers, which exhibit typical synaptic behaviors including excitatory postsynaptic current(EPSC), pair-pulse facilitation and dynamic filtering characteristics under both electrical or optical signal stimulation. Further, the combination of the high-quality Al2O3 tuning layer and highly photosensitive PQDs charge-trapping layer provides the devices with extensively tunable synaptic performance under optical and electrical co-modulation. Applying light during electrical modulation can significantly improve both the synaptic weight changes and the nonlinearity of weight updates, while the memory effect under light modulation can be obviously adjusted by the gate voltage.The pattern learning and forgetting processes for "0" and "1"with different synaptic weights and memory times are further demonstrated in the device array. Overall, this work provides synaptic devices with tunable functions for building complex and robust artificial neural networks.