为预防注烃类气体提高采收率过程中产生沥青质沉淀,对沥青质初始沉淀压力进行了试验研究。在分析注烃类气体过程中沥青质沉淀机理的基础上,通过自主研发的固相沉积激光探测装置,采用透光强度法测定了原油样品在不同温度下高压注气过...为预防注烃类气体提高采收率过程中产生沥青质沉淀,对沥青质初始沉淀压力进行了试验研究。在分析注烃类气体过程中沥青质沉淀机理的基础上,通过自主研发的固相沉积激光探测装置,采用透光强度法测定了原油样品在不同温度下高压注气过程中沥青质的初始沉淀压力,并确定了沥青质沉淀的深度。试验得出,原油沥青质初始沉淀压力随温度升高而下降,测得44,80和123℃温度下原油的沥青质初始沉淀压力分别为44.1,39.7和35.2 M Pa;每注入物质的量分数为1%的烃类气体,试验油样的沥青质初始沉淀压力升高0.5~0.6 M Pa;井筒温度压力曲线与沥青质沉淀相包络线相结合预测井筒中出现沥青质沉淀的深度在1800 m左右,与现场情况吻合较好。研究表明,原油中沥青质初始沉淀压力与注气量之间呈线性关系,可为现场注气驱油预防和清除沥青质沉积物提供理论依据。展开更多
Macro-microscopic tectonic analysis and lithologic features show that the gold-bearing breccia bodies in the Shuangwang gold deposit, for hydrofracturing of the deep-sourced and alkali-rich fluids in the Devonian sodi...Macro-microscopic tectonic analysis and lithologic features show that the gold-bearing breccia bodies in the Shuangwang gold deposit, for hydrofracturing of the deep-sourced and alkali-rich fluids in the Devonian sodic rock series, are identified as hydrofracturing breccia bodies. Since the Indosinian, intracontinental collisional orogenesis results in multiple fracturings and magmatic emplacements in the Qinling area. Deep-sourced fluids resulting from deep fractures and granitoid magmatic intrusion are of a supercritical nature. Joint action between the fluid-rock system and structures leads to hydrofracturing and ore formation of the gold deposit. Firstly, the progressive coaxial compression caused the competent sodic rock series and the incompetent pelitic rock series to be deformed and partitioned. Lens-like weak-strain domains are hence formed and distributed at the approximate equidistance zones and the linear strong-strain zones, respectively. Subsequently, the progressive non-coaxial shearing and right-lateral and high-angle oblique thrusting lead to the most developed fracture system in the core of the weak-strain domain to turn from compression to extension and to link up with the deep fracture systems. The periodical huge pressure decline in the pumping center causes the deep-sourced confined fluids to develop periodic tectonic pumping, hydrofracturing and precipitation-healing in the sodic rock series. The gold-bearinghydrofracturing breccia bodies are hence ultimately formed at near-equidistance tectonic lenses. On the basis of the above model, the predicted concealed gold-bearing hydrofracturing breccia bodies have been preliminarily validated by latest drillings.展开更多
文摘为预防注烃类气体提高采收率过程中产生沥青质沉淀,对沥青质初始沉淀压力进行了试验研究。在分析注烃类气体过程中沥青质沉淀机理的基础上,通过自主研发的固相沉积激光探测装置,采用透光强度法测定了原油样品在不同温度下高压注气过程中沥青质的初始沉淀压力,并确定了沥青质沉淀的深度。试验得出,原油沥青质初始沉淀压力随温度升高而下降,测得44,80和123℃温度下原油的沥青质初始沉淀压力分别为44.1,39.7和35.2 M Pa;每注入物质的量分数为1%的烃类气体,试验油样的沥青质初始沉淀压力升高0.5~0.6 M Pa;井筒温度压力曲线与沥青质沉淀相包络线相结合预测井筒中出现沥青质沉淀的深度在1800 m左右,与现场情况吻合较好。研究表明,原油中沥青质初始沉淀压力与注气量之间呈线性关系,可为现场注气驱油预防和清除沥青质沉积物提供理论依据。
基金the 305 State Key Sci&Tech Program(Grant No.2003BA612A-06-01)the Key Innovation Oriented Program(GrantNo.KZCX3-SW-137)of the Chinese Academy of Sciences.
文摘Macro-microscopic tectonic analysis and lithologic features show that the gold-bearing breccia bodies in the Shuangwang gold deposit, for hydrofracturing of the deep-sourced and alkali-rich fluids in the Devonian sodic rock series, are identified as hydrofracturing breccia bodies. Since the Indosinian, intracontinental collisional orogenesis results in multiple fracturings and magmatic emplacements in the Qinling area. Deep-sourced fluids resulting from deep fractures and granitoid magmatic intrusion are of a supercritical nature. Joint action between the fluid-rock system and structures leads to hydrofracturing and ore formation of the gold deposit. Firstly, the progressive coaxial compression caused the competent sodic rock series and the incompetent pelitic rock series to be deformed and partitioned. Lens-like weak-strain domains are hence formed and distributed at the approximate equidistance zones and the linear strong-strain zones, respectively. Subsequently, the progressive non-coaxial shearing and right-lateral and high-angle oblique thrusting lead to the most developed fracture system in the core of the weak-strain domain to turn from compression to extension and to link up with the deep fracture systems. The periodical huge pressure decline in the pumping center causes the deep-sourced confined fluids to develop periodic tectonic pumping, hydrofracturing and precipitation-healing in the sodic rock series. The gold-bearinghydrofracturing breccia bodies are hence ultimately formed at near-equidistance tectonic lenses. On the basis of the above model, the predicted concealed gold-bearing hydrofracturing breccia bodies have been preliminarily validated by latest drillings.