This work presented the results of tungstic precipitation from Na2WO4-Na2SO4-H20 system at 293.15 K, with which the Pitzer parameters of β(0)Na2wo4 and β(1)Na2wo4 were determined from Pitzer equation by regressi...This work presented the results of tungstic precipitation from Na2WO4-Na2SO4-H20 system at 293.15 K, with which the Pitzer parameters of β(0)Na2wo4 and β(1)Na2wo4 were determined from Pitzer equation by regression. Thus the mean ionic activity coeffi- cients of sodium tungstate were calculated. The obtained β(0)Na2wo4 and β(1)Na2wo4 were substituted as fixed values in extraction modeling from Na2WO4-H2SO4-H20 system by primary amine (N1923) in toluene as diluent. Meanwhile the activity coeffi- cient expressions in organic phase were varied based on Pitzer theory that the interaction term for the solvent should not be in- cluded. The Pitzer parameters for organic phase were re-regressed in order to make the model more accurate. The average ab- solute relative deviation (AARD) for calculated and experimental molality of WO42 in aqueous phase was 5.24%. The results showed that the model can not only correlate but also predict the liquid-liquid equilibrium (LLE) data.展开更多
A numerical analysis method (DSMC, Direct Simulation Monte Carlo)[1] was developed to simulate the molecular motion of rarefied gases. In the present paper, numerical approaches by the DSMC method have been carded o...A numerical analysis method (DSMC, Direct Simulation Monte Carlo)[1] was developed to simulate the molecular motion of rarefied gases. In the present paper, numerical approaches by the DSMC method have been carded out. By the computation model of CC-40F carbon coater, the cylindrical deposition machine has axial symmetry; the flows inside the vacuum chamber were analyzed. The substrates were put on the bottom and the fiber near the ceiling in the computational domain. In the computational model, air and carbon molecules are working ones. The effects of the air gas pressure variation in the chamber, the effects of the deposition distance variation and the surface temperature variation of the carbon fiber on thermo fluids phenomena are discussed and visualized. Changing the number density of carbon and air, the temperature of the carbon and the velocity of the carbon in the chamber are discussed. With changing the surface temperature of the carbon fiber, qualitative assay of experiment and simulation result is in similar trend very well. The DSMC method is a forceful tool for the study of rarefied gas flow in vacuum deposition machine.展开更多
基金supported by the National Natural Science Foundation of China(21206168,51178446)
文摘This work presented the results of tungstic precipitation from Na2WO4-Na2SO4-H20 system at 293.15 K, with which the Pitzer parameters of β(0)Na2wo4 and β(1)Na2wo4 were determined from Pitzer equation by regression. Thus the mean ionic activity coeffi- cients of sodium tungstate were calculated. The obtained β(0)Na2wo4 and β(1)Na2wo4 were substituted as fixed values in extraction modeling from Na2WO4-H2SO4-H20 system by primary amine (N1923) in toluene as diluent. Meanwhile the activity coeffi- cient expressions in organic phase were varied based on Pitzer theory that the interaction term for the solvent should not be in- cluded. The Pitzer parameters for organic phase were re-regressed in order to make the model more accurate. The average ab- solute relative deviation (AARD) for calculated and experimental molality of WO42 in aqueous phase was 5.24%. The results showed that the model can not only correlate but also predict the liquid-liquid equilibrium (LLE) data.
文摘A numerical analysis method (DSMC, Direct Simulation Monte Carlo)[1] was developed to simulate the molecular motion of rarefied gases. In the present paper, numerical approaches by the DSMC method have been carded out. By the computation model of CC-40F carbon coater, the cylindrical deposition machine has axial symmetry; the flows inside the vacuum chamber were analyzed. The substrates were put on the bottom and the fiber near the ceiling in the computational domain. In the computational model, air and carbon molecules are working ones. The effects of the air gas pressure variation in the chamber, the effects of the deposition distance variation and the surface temperature variation of the carbon fiber on thermo fluids phenomena are discussed and visualized. Changing the number density of carbon and air, the temperature of the carbon and the velocity of the carbon in the chamber are discussed. With changing the surface temperature of the carbon fiber, qualitative assay of experiment and simulation result is in similar trend very well. The DSMC method is a forceful tool for the study of rarefied gas flow in vacuum deposition machine.