A novel technology using Fe powder as reducing agent for Ge and Cu recovery from precipitating vitriol supernatant in Zn hydrometallurgical plant was investigated. The results show that reaction time, temperature, agi...A novel technology using Fe powder as reducing agent for Ge and Cu recovery from precipitating vitriol supernatant in Zn hydrometallurgical plant was investigated. The results show that reaction time, temperature, agitation speed, initial pH value of solution and the amount of reducing Fe have significant effects on recovering Ge and Cu, and the optimum process operating parameters are established as follows: time 120 min, initial pH value 1.5, the dosage of reducing Fe powder 4 g/L, agitation speed 600 r/min and temperature 80 °C. Under these experimental conditions, the recovery ratios of Ge and Cu from precipitating vitriol supernatant in Zn hydrometallurgical plant can reach 96% and 100%, respectively. The content of Ge in the reduced residue reaches up to 2.06% (mass fraction), indicating that the separation and enrichment of Ge from the Zn sulfate solution is realized. The grade of Ge and Cu can reach up to 4.88% and 56.75%, respectively, when the reduced residue is further processed.展开更多
基金Project(2011TT2057)supported by Science&Technology Department of Hunan Province,China
文摘A novel technology using Fe powder as reducing agent for Ge and Cu recovery from precipitating vitriol supernatant in Zn hydrometallurgical plant was investigated. The results show that reaction time, temperature, agitation speed, initial pH value of solution and the amount of reducing Fe have significant effects on recovering Ge and Cu, and the optimum process operating parameters are established as follows: time 120 min, initial pH value 1.5, the dosage of reducing Fe powder 4 g/L, agitation speed 600 r/min and temperature 80 °C. Under these experimental conditions, the recovery ratios of Ge and Cu from precipitating vitriol supernatant in Zn hydrometallurgical plant can reach 96% and 100%, respectively. The content of Ge in the reduced residue reaches up to 2.06% (mass fraction), indicating that the separation and enrichment of Ge from the Zn sulfate solution is realized. The grade of Ge and Cu can reach up to 4.88% and 56.75%, respectively, when the reduced residue is further processed.