Electrodeposition of aluminum from benzene-tetrahydrofuran-Al Cl3-Li Al H4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and...Electrodeposition of aluminum from benzene-tetrahydrofuran-Al Cl3-Li Al H4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and crystal size, including current density, temperature, molar ratio of benzene/tetrahydrofuran and stirring speed. The deposit microstructure was adjusted by changing the parameters, and the optimum operating conditions were determined. Dense, bright and adherent aluminum coatings were obtained over a wide range of current densities(10-25 m A/cm2), molar ratio of benzene and tetrahydrofuran(4:1 to 7:8) and stirring speeds(200-500 r/min). Smaller grain sizes and well-adhered deposits were obtained at lower temperatures. Aluminum-magnesium alloys could potentially be used as hydrogen storage materials. A novel method for Al-Mg deposition was proposed by using pure Mg anodes in the organic solvents system benzene-tetrahydrofuran-Al Cl3-Li Al H4. XRD shows that the aluminum-magnesium alloys are mainly Al3Mg2 and Al12Mg17.展开更多
The purpose of this paper is to apply "Soil and Water Assessment Tool (SWAT)" model to assess the impacts of climate change and deforestation on stream discharge and sediment yield from Phu Luong watershed in Nort...The purpose of this paper is to apply "Soil and Water Assessment Tool (SWAT)" model to assess the impacts of climate change and deforestation on stream discharge and sediment yield from Phu Luong watershed in Northern Viet Nam. Among the three climate change scenarios B 1, B2, and A2, representing low, medium, and high levels of greenhouse gas emission, respectively were set up for Viet Nam, the B2 scenario was selected for this study. Two land use scenarios (S1-2030 and $2-2050) were formulated combination with climate change in WSAT simulation. In B2 climate change scenario, mean temperature increases 0.7℃(2030) and 1.3 ℃ (2050); annual rainfall increases 2.1% (2030) and 3.80% (2050) respect to baseline scenario. The results show that the stream discharge is likely to increase in the future during the wet season with increasing threats of sedimentation.展开更多
The cleanliness of gasoline is related to its components and properties.All commercial gasoline builds up deposits on the engine's injector,intake valve and combustion chamber,which can significantly lower the eng...The cleanliness of gasoline is related to its components and properties.All commercial gasoline builds up deposits on the engine's injector,intake valve and combustion chamber,which can significantly lower the engine performance and influence exhaust gas emissions.In this study,the intake valve deposits (IVD) and combustion chamber deposits (CCD) produced from combustion of fuel containing 21 v%—42 v% of aromatics and 8 v%—31 v% of olefins have been studied using Ford engine tests,and the characteristics of deposits were studied by IR spectroscopy,TGA and elemental analysis instrument.The test results have shown that deposit formation depends on the fuel composition,especially the aromatic content in the fuel.It is also observed that there are differences in the values of IVD and CCD measured by IR spectrometry and elemental analyses.展开更多
This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated depos...This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated deposits(including glacial till,fluvioglacial, debris flow, river and lake deposits)were collected and tested in the laboratory. The results showed that the glacier-associated deposits can be differentiated based on particle gradation,particle size distribution and accumulated percentages. We evaluated the evolution of a former dammed lake in the Moxi basin based on glacierassociated deposits. The results of this study also indicated that the Moxi Platform was not formed by a single depositional process but is composed of both fluvioglacial and debris flow deposits. This research shows that the depositional style analysis is useful in identifying different glacier-associated deposits in high mountain regions. Moreover, the evaluation of the differences in particle sizes of the glacierassociated deposits is useful in reconstructing geohazard events in periglacial regions, and this information can help in identifying and reducing the potential risks associated with geo-hazards.展开更多
A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If e...A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If endogenous processes do not work, the surface of the continents would lower to the level close to the ocean surface and the relief would have almost no ruggedness. Recently, there have been talks about the relative classification of deviation of the present state from the "original" or "natural" one caused by anthropogeneous effects. The activity of man can manifest itself by pollution, the excessive use of water, a change in the flow regime, and the like. Research into the morphology of the river bottom and the bottom of settling tanks or dam reservoirs is systematically carried out in selected streams and reservoirs by the long-term sampling of bottom sediments. The knowledge of the sediment layer is also important. The EIS method, which was used for measuring, is new for the aforementioned applications. Possibilities of EIS method with new apparatus using for this application were tested in laboratory and in situ. On the basis of interpretation of the electrical conductivity data, a grid of depth data was acquired. These data are characterized by anomalously high and low "spots" and show morphological changes in the studied area.展开更多
It is of significance to understand the chemical content of carbon deposits in the large-scale two-stroke(LSTS) marine diesel engine because of adverse effect on the engine performance, oil consumption and emissions. ...It is of significance to understand the chemical content of carbon deposits in the large-scale two-stroke(LSTS) marine diesel engine because of adverse effect on the engine performance, oil consumption and emissions. In this work, two different combustion chamber deposits in an LSTS marine diesel engine were studied using thermogravimetry analysis(TGA), elemental analysis(EA) and synchrotron X-ray fluorescence(SXRF). One was on the piston top and the other on the piston land, termed PTCD and PLCD, respectively. For the PTCD sample, the 97% residue in the TGA and 1.4% carbon content in the EA indicated the main compositions of PTCD were metal salts or oxides and ashes, significantly different from the previous findings of the highest carbon content in deposits from the small four stroke engines. The different chemical content between PTCD and PLCD implied higher thermal load in the LSTS marine diesel engine led to a nearly complete thermal decomposition of PTCD. The higher calcium content in PTCD and PLCD indicated the additives of cylinder oil should be the main source of metal content of PTCD and PLCD. Calcium distribution in the SXRF results was indicative of the potential layered structure in PTCD and PLCD. In addition, the appearance of iron on the surface against the piston in PTCD and PLCD indicated iron oxides formation between carbon deposit and piston materials.展开更多
In this work,silicon-germanium(SiGe)thin films are epitaxially grown on Ge substrates by ultra-high vacuum chemical vapor deposition and then doped with Mn element by ion-implantation and subsequent rapid thermal anne...In this work,silicon-germanium(SiGe)thin films are epitaxially grown on Ge substrates by ultra-high vacuum chemical vapor deposition and then doped with Mn element by ion-implantation and subsequent rapid thermal annealing(RTA).The characterizations show that the epitaxial SiGe thin films are single-crystalline with uniform tensile strain and then become polycrystalline after the ion implantation and following RTA.The magnetization measurements indicate that the annealed thin films exhibit Mn concentration-dependent ferromagnetism up to 309 K and the X-ray magnetic circular dichroism characterizations reveal the spin and orbital magnetic moments from the substitutional Mn element.To minimize the influence of anomalous Hall effect,magneto-transport measurements at a high magnetic field up to 31 T at 300 K are performed to obtain the hole mobility,which reaches a record-high value of~1230 cm^(2)V^(-1)s^(-1),owing to the crystalline quality and tensile strain-induced energy band modulation of the samples.The first demonstration of Mn-doped SiGe thin films with roomtemperature ferromagnetism and high carrier mobility may pave the way for practical semiconductor spintronic applications.展开更多
Three types of a-C:Co/Si samples were fabricated using the pulsed laser deposition: Co2-C98/8i with Co dispersed in the a-C film, Co2-C98/Si with Co segregated at the interface, and a-C/Co/Si with Co continuously dist...Three types of a-C:Co/Si samples were fabricated using the pulsed laser deposition: Co2-C98/8i with Co dispersed in the a-C film, Co2-C98/Si with Co segregated at the interface, and a-C/Co/Si with Co continuously distributed at the a-C/Si interface. Both types of Co2-C98/Si samples had the positive bias-voltage-dependent magnetoresistance (MR) at 300 K, and all MRs had saturated behavior. The study on the electrotransport properties indicated that the MR appeared in the diffusion current region, and the mechanism of MR was proposed to be that the applied magnetic field and local random magnetic field caused by the superparamagnetic Co particles modulate the ratio of singlet and triplet spin states, resulting in the MR effect. In addition, the very different physical and structural properties of all samples revealed that Co played a crucial role in the room-temperature positive MR of a-C:Co/Si system.展开更多
基金Projects(51101104,51372156)supported by the National Natural Science Foundation of ChinaProject(LJQ2015074)supported by the Program for Liaoning Excellent Talents in University,China
文摘Electrodeposition of aluminum from benzene-tetrahydrofuran-Al Cl3-Li Al H4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and crystal size, including current density, temperature, molar ratio of benzene/tetrahydrofuran and stirring speed. The deposit microstructure was adjusted by changing the parameters, and the optimum operating conditions were determined. Dense, bright and adherent aluminum coatings were obtained over a wide range of current densities(10-25 m A/cm2), molar ratio of benzene and tetrahydrofuran(4:1 to 7:8) and stirring speeds(200-500 r/min). Smaller grain sizes and well-adhered deposits were obtained at lower temperatures. Aluminum-magnesium alloys could potentially be used as hydrogen storage materials. A novel method for Al-Mg deposition was proposed by using pure Mg anodes in the organic solvents system benzene-tetrahydrofuran-Al Cl3-Li Al H4. XRD shows that the aluminum-magnesium alloys are mainly Al3Mg2 and Al12Mg17.
文摘The purpose of this paper is to apply "Soil and Water Assessment Tool (SWAT)" model to assess the impacts of climate change and deforestation on stream discharge and sediment yield from Phu Luong watershed in Northern Viet Nam. Among the three climate change scenarios B 1, B2, and A2, representing low, medium, and high levels of greenhouse gas emission, respectively were set up for Viet Nam, the B2 scenario was selected for this study. Two land use scenarios (S1-2030 and $2-2050) were formulated combination with climate change in WSAT simulation. In B2 climate change scenario, mean temperature increases 0.7℃(2030) and 1.3 ℃ (2050); annual rainfall increases 2.1% (2030) and 3.80% (2050) respect to baseline scenario. The results show that the stream discharge is likely to increase in the future during the wet season with increasing threats of sedimentation.
基金the PetroChina Corporation Research and Development Project (06-03B-01-01) for financial support
文摘The cleanliness of gasoline is related to its components and properties.All commercial gasoline builds up deposits on the engine's injector,intake valve and combustion chamber,which can significantly lower the engine performance and influence exhaust gas emissions.In this study,the intake valve deposits (IVD) and combustion chamber deposits (CCD) produced from combustion of fuel containing 21 v%—42 v% of aromatics and 8 v%—31 v% of olefins have been studied using Ford engine tests,and the characteristics of deposits were studied by IR spectroscopy,TGA and elemental analysis instrument.The test results have shown that deposit formation depends on the fuel composition,especially the aromatic content in the fuel.It is also observed that there are differences in the values of IVD and CCD measured by IR spectrometry and elemental analyses.
基金funded by The China Geological Survey (Grant No. 12120113010200)Ministry of Science and Technology of the People’s Republic of China (Grant No. 2011FY110100-5)The National Natural Science Foundation of China (Grant No. 41101086)
文摘This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated deposits(including glacial till,fluvioglacial, debris flow, river and lake deposits)were collected and tested in the laboratory. The results showed that the glacier-associated deposits can be differentiated based on particle gradation,particle size distribution and accumulated percentages. We evaluated the evolution of a former dammed lake in the Moxi basin based on glacierassociated deposits. The results of this study also indicated that the Moxi Platform was not formed by a single depositional process but is composed of both fluvioglacial and debris flow deposits. This research shows that the depositional style analysis is useful in identifying different glacier-associated deposits in high mountain regions. Moreover, the evaluation of the differences in particle sizes of the glacierassociated deposits is useful in reconstructing geohazard events in periglacial regions, and this information can help in identifying and reducing the potential risks associated with geo-hazards.
文摘A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If endogenous processes do not work, the surface of the continents would lower to the level close to the ocean surface and the relief would have almost no ruggedness. Recently, there have been talks about the relative classification of deviation of the present state from the "original" or "natural" one caused by anthropogeneous effects. The activity of man can manifest itself by pollution, the excessive use of water, a change in the flow regime, and the like. Research into the morphology of the river bottom and the bottom of settling tanks or dam reservoirs is systematically carried out in selected streams and reservoirs by the long-term sampling of bottom sediments. The knowledge of the sediment layer is also important. The EIS method, which was used for measuring, is new for the aforementioned applications. Possibilities of EIS method with new apparatus using for this application were tested in laboratory and in situ. On the basis of interpretation of the electrical conductivity data, a grid of depth data was acquired. These data are characterized by anomalously high and low "spots" and show morphological changes in the studied area.
基金supported by China Postdoctoral Science Foundation(Grant No.2013M541571)National Natural Science Foundation of China(Grant No.11275257)
文摘It is of significance to understand the chemical content of carbon deposits in the large-scale two-stroke(LSTS) marine diesel engine because of adverse effect on the engine performance, oil consumption and emissions. In this work, two different combustion chamber deposits in an LSTS marine diesel engine were studied using thermogravimetry analysis(TGA), elemental analysis(EA) and synchrotron X-ray fluorescence(SXRF). One was on the piston top and the other on the piston land, termed PTCD and PLCD, respectively. For the PTCD sample, the 97% residue in the TGA and 1.4% carbon content in the EA indicated the main compositions of PTCD were metal salts or oxides and ashes, significantly different from the previous findings of the highest carbon content in deposits from the small four stroke engines. The different chemical content between PTCD and PLCD implied higher thermal load in the LSTS marine diesel engine led to a nearly complete thermal decomposition of PTCD. The higher calcium content in PTCD and PLCD indicated the additives of cylinder oil should be the main source of metal content of PTCD and PLCD. Calcium distribution in the SXRF results was indicative of the potential layered structure in PTCD and PLCD. In addition, the appearance of iron on the surface against the piston in PTCD and PLCD indicated iron oxides formation between carbon deposit and piston materials.
基金supported by the National Key Research and Development Program of China(2017YFB0405702)the National Natural Science Foundation of China(52172272)。
文摘In this work,silicon-germanium(SiGe)thin films are epitaxially grown on Ge substrates by ultra-high vacuum chemical vapor deposition and then doped with Mn element by ion-implantation and subsequent rapid thermal annealing(RTA).The characterizations show that the epitaxial SiGe thin films are single-crystalline with uniform tensile strain and then become polycrystalline after the ion implantation and following RTA.The magnetization measurements indicate that the annealed thin films exhibit Mn concentration-dependent ferromagnetism up to 309 K and the X-ray magnetic circular dichroism characterizations reveal the spin and orbital magnetic moments from the substitutional Mn element.To minimize the influence of anomalous Hall effect,magneto-transport measurements at a high magnetic field up to 31 T at 300 K are performed to obtain the hole mobility,which reaches a record-high value of~1230 cm^(2)V^(-1)s^(-1),owing to the crystalline quality and tensile strain-induced energy band modulation of the samples.The first demonstration of Mn-doped SiGe thin films with roomtemperature ferromagnetism and high carrier mobility may pave the way for practical semiconductor spintronic applications.
基金support given by the National Natural Science Foundation of China (Grant Nos. U0734001 and 50772054)the Ministry of Science and Technology of China (Grant Nos. 2008CB617601 and 2009CB929202)
文摘Three types of a-C:Co/Si samples were fabricated using the pulsed laser deposition: Co2-C98/8i with Co dispersed in the a-C film, Co2-C98/Si with Co segregated at the interface, and a-C/Co/Si with Co continuously distributed at the a-C/Si interface. Both types of Co2-C98/Si samples had the positive bias-voltage-dependent magnetoresistance (MR) at 300 K, and all MRs had saturated behavior. The study on the electrotransport properties indicated that the MR appeared in the diffusion current region, and the mechanism of MR was proposed to be that the applied magnetic field and local random magnetic field caused by the superparamagnetic Co particles modulate the ratio of singlet and triplet spin states, resulting in the MR effect. In addition, the very different physical and structural properties of all samples revealed that Co played a crucial role in the room-temperature positive MR of a-C:Co/Si system.