Based on the data about sedimentary facies and palaeogeography, this paper proves the existence of the Cathaysia (the part in eastern Zhejiang and northern Fujian, the same hereinafter) and makes a survey about its pa...Based on the data about sedimentary facies and palaeogeography, this paper proves the existence of the Cathaysia (the part in eastern Zhejiang and northern Fujian, the same hereinafter) and makes a survey about its palaeogeography since Sinian Period. It also discusses the evolution of the tectonic environment of this region during Phanerozoic Eon, according to the features such as the composition of sandstones derived from the old land and alkalinity of volcanic rocks and so on. Continuous uplifting was maintained in Cathaysia during Sinian Period and Paleozoic Era, typically with no significant tectono-magmatic activity being observed. Its northwestern margin belongs to the type of passive continental margin during the middle and late phase of Caledonian Cycle. It showed the characteristics of a steady continent in late Paleozoic era, but was turned quickly into an active continental margin after the middle Jurassic period.展开更多
This research paper analyses the grain-size characteristics of the Quaternary deposits at Xingshan near Siping, Jilin province in China by employing graphic measures to study the grain size distribution and its mode o...This research paper analyses the grain-size characteristics of the Quaternary deposits at Xingshan near Siping, Jilin province in China by employing graphic measures to study the grain size distribution and its mode of transport and deposition. The Quaternary deposits at Xingshan lie unconformable on Cretaceous rocks made of siltstone, mudstone and sandstone. The average grain size is between 8.06 to 8.55Φ (0.002 6 ~0.003 7 mm). The Quaternary deposits at Xingshan mainly compose of very fine silt to clay. The compositions of the grade are clay 63% and silt 37%. The clay size components are weathered debris transported and deposited by flowing water from the SE highlands or hills to the low lying NW Xingshan plains whereas the silty components accumulated by aoelian process. The Quaternary deposits at Xingshan accumulated in the middle and late Pleistocene interglacial periods from (459.12~39.03) ka to (88.92~7.56) ka. The standard deviation ranged from 0.96 to 1.36Φ, indicating that the sediments are moderately to poorly sorted, Coefficient of skewness ranged from 0.16~0.31 with an average skewness of 0.218, (Positively skewed towards fine). Kurtosis values (0.84~1.05) from the grain size distribution and visual inspection of the frequency curves indicate platykurtic to mesokurtic curves and unimodal to bimodal grain-size distribution. The type of deposit formation is sand dune and the source is at a distal from its provenance.展开更多
Based on the analysis of sedimentary facies and chemical index of alteration(CIA) in Nanhua and Ediacaran Systems in the southwest of Tarim Block,some features of glacial records in Neoproterozoic become more clear.Si...Based on the analysis of sedimentary facies and chemical index of alteration(CIA) in Nanhua and Ediacaran Systems in the southwest of Tarim Block,some features of glacial records in Neoproterozoic become more clear.Six sedimentary facies have been divided in the study area,including alluvial fan facies,lacustrine facies,glacial facies,littoral facies,neritic facies,and lagoonal facies,showing that this area underwent a process from continent to marine,with mainly littoral and neritic sedimentation.Two cold events have been recognized by analysis of CIA values in the study area,called Bolong and Yutang glaciation,respectively.They present as thick-layer tillite deposition in the Bolong Formation and thin-layer tillite deposition in the Yutang Formation,respectively.The Bolong glacial period in the study area can be correlated to the Yulmeinak glacial period in Aksu area,Tereeken glacial period in Qurugtagh area,and the Nantuo glacial period in South China,which is equivalent to the universally acknowledged Marinoan glacial period.The Yutang glacial period can be correlated to the Hankalchough glacial period in Qurugtagh,which is equivalent to Gaskers glaciation in Newfoundland.展开更多
Sediment components and their fluxes of Cores MD12-3428(water depth: 903 m), MD12-3433(water depth: 2125 m),and MD12-3434(water depth: 2995 m), obtained along a transect on the continental slope of the northern South ...Sediment components and their fluxes of Cores MD12-3428(water depth: 903 m), MD12-3433(water depth: 2125 m),and MD12-3434(water depth: 2995 m), obtained along a transect on the continental slope of the northern South China Sea, have been conducted to reveal the spatiotemporal variations and the controlling factors of the sediment components and of their fluxes.Results show that deep-sea sediments in the northern South China Sea are composed mainly of terrigenous(59–89%) and carbonate(6–38%) particles, with minor components of opal(1.6–9.4%) and organic matter(0.7–1.9%). Fluxes of terrigenous and carbonate particles reach up to 2.4–21.8 and 0.4–6.5 g cm–2 kyr–1, respectively, values that are one to two orders of magnitude higher than the fluxes of opal and organic matter. Temporal variations of the percentages and fluxes of deep-sea sediment components have displayed clear glacial-interglacial cyclicity since the last glaciation. Terrigenous, opal, and organic matter percentages and their fluxes increas clearly during marine isotope stage 2, while carbonate percentages and fluxes show an opposite variation pattern or are characterized by an unremarkable increase. This implies that deep-sea carbonate in the South China Sea is affected by the dilution of terrigenous inputs during the sea-level lowstand. With increasing water depth along the transect, the terrigenous percentage increases but with largely decreased fluxes. Both the percentage and flux of carbonate decrease, while the percentages and fluxes of opal and organic matter display much more complicated variational features. The spatiotemporal variations of deep-sea sediment components and of their fluxes since the last glaciation in the northern South China Sea are strongly controlled by sea-level fluctuations. Simultaneously, terrigenous supply associated with monsoonal rainfall, marine primary productivity,and the dilution effect between terrigenous and biogenic particles, also play interconnected roles in the sediment accumulation processes.展开更多
文摘Based on the data about sedimentary facies and palaeogeography, this paper proves the existence of the Cathaysia (the part in eastern Zhejiang and northern Fujian, the same hereinafter) and makes a survey about its palaeogeography since Sinian Period. It also discusses the evolution of the tectonic environment of this region during Phanerozoic Eon, according to the features such as the composition of sandstones derived from the old land and alkalinity of volcanic rocks and so on. Continuous uplifting was maintained in Cathaysia during Sinian Period and Paleozoic Era, typically with no significant tectono-magmatic activity being observed. Its northwestern margin belongs to the type of passive continental margin during the middle and late phase of Caledonian Cycle. It showed the characteristics of a steady continent in late Paleozoic era, but was turned quickly into an active continental margin after the middle Jurassic period.
文摘This research paper analyses the grain-size characteristics of the Quaternary deposits at Xingshan near Siping, Jilin province in China by employing graphic measures to study the grain size distribution and its mode of transport and deposition. The Quaternary deposits at Xingshan lie unconformable on Cretaceous rocks made of siltstone, mudstone and sandstone. The average grain size is between 8.06 to 8.55Φ (0.002 6 ~0.003 7 mm). The Quaternary deposits at Xingshan mainly compose of very fine silt to clay. The compositions of the grade are clay 63% and silt 37%. The clay size components are weathered debris transported and deposited by flowing water from the SE highlands or hills to the low lying NW Xingshan plains whereas the silty components accumulated by aoelian process. The Quaternary deposits at Xingshan accumulated in the middle and late Pleistocene interglacial periods from (459.12~39.03) ka to (88.92~7.56) ka. The standard deviation ranged from 0.96 to 1.36Φ, indicating that the sediments are moderately to poorly sorted, Coefficient of skewness ranged from 0.16~0.31 with an average skewness of 0.218, (Positively skewed towards fine). Kurtosis values (0.84~1.05) from the grain size distribution and visual inspection of the frequency curves indicate platykurtic to mesokurtic curves and unimodal to bimodal grain-size distribution. The type of deposit formation is sand dune and the source is at a distal from its provenance.
基金supported by National Natural Science Foundation of China (Grant Nos. 40972126 & 40821002)
文摘Based on the analysis of sedimentary facies and chemical index of alteration(CIA) in Nanhua and Ediacaran Systems in the southwest of Tarim Block,some features of glacial records in Neoproterozoic become more clear.Six sedimentary facies have been divided in the study area,including alluvial fan facies,lacustrine facies,glacial facies,littoral facies,neritic facies,and lagoonal facies,showing that this area underwent a process from continent to marine,with mainly littoral and neritic sedimentation.Two cold events have been recognized by analysis of CIA values in the study area,called Bolong and Yutang glaciation,respectively.They present as thick-layer tillite deposition in the Bolong Formation and thin-layer tillite deposition in the Yutang Formation,respectively.The Bolong glacial period in the study area can be correlated to the Yulmeinak glacial period in Aksu area,Tereeken glacial period in Qurugtagh area,and the Nantuo glacial period in South China,which is equivalent to the universally acknowledged Marinoan glacial period.The Yutang glacial period can be correlated to the Hankalchough glacial period in Qurugtagh,which is equivalent to Gaskers glaciation in Newfoundland.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91528304, 41530964, 91428310 & 41525020)
文摘Sediment components and their fluxes of Cores MD12-3428(water depth: 903 m), MD12-3433(water depth: 2125 m),and MD12-3434(water depth: 2995 m), obtained along a transect on the continental slope of the northern South China Sea, have been conducted to reveal the spatiotemporal variations and the controlling factors of the sediment components and of their fluxes.Results show that deep-sea sediments in the northern South China Sea are composed mainly of terrigenous(59–89%) and carbonate(6–38%) particles, with minor components of opal(1.6–9.4%) and organic matter(0.7–1.9%). Fluxes of terrigenous and carbonate particles reach up to 2.4–21.8 and 0.4–6.5 g cm–2 kyr–1, respectively, values that are one to two orders of magnitude higher than the fluxes of opal and organic matter. Temporal variations of the percentages and fluxes of deep-sea sediment components have displayed clear glacial-interglacial cyclicity since the last glaciation. Terrigenous, opal, and organic matter percentages and their fluxes increas clearly during marine isotope stage 2, while carbonate percentages and fluxes show an opposite variation pattern or are characterized by an unremarkable increase. This implies that deep-sea carbonate in the South China Sea is affected by the dilution of terrigenous inputs during the sea-level lowstand. With increasing water depth along the transect, the terrigenous percentage increases but with largely decreased fluxes. Both the percentage and flux of carbonate decrease, while the percentages and fluxes of opal and organic matter display much more complicated variational features. The spatiotemporal variations of deep-sea sediment components and of their fluxes since the last glaciation in the northern South China Sea are strongly controlled by sea-level fluctuations. Simultaneously, terrigenous supply associated with monsoonal rainfall, marine primary productivity,and the dilution effect between terrigenous and biogenic particles, also play interconnected roles in the sediment accumulation processes.