Valuable geological and environmental information can be obtained from the 200 m thick lacustrine sediments in the Diexi lake(an ancient landslide-dammed lake) of the Minjiang River. The shaking table test method was ...Valuable geological and environmental information can be obtained from the 200 m thick lacustrine sediments in the Diexi lake(an ancient landslide-dammed lake) of the Minjiang River. The shaking table test method was employed to study the disturbance phenomena which occurred in the Diexi lake sediments. The results show that the disturbance phenomena were caused by liquefaction-induced flows in the unconsolidated lacustrine sediments, due to triggering by earthquakes. The deformations only occurred in unconsolidated sediment layers and not in consolidated layers. This means that a consolidated layer cannot be liquefied and disturbed again by an earthquake for a second time. The disturbance on one layer corresponds to only one earthquake. The temporal occurrence of earthquakes could be determined by disturbance layers generated at different ages. In total, 10 disturbed layers were found in the lacustrine sediments of the Diexi lake. The experiments showed that there were more than 10 earthquakes between 30 ka B.P. and 15 ka B.P. in the Diexi lake area based on the dating of the disturbed sediment layers.展开更多
The density,conductivity,and viscosity of the 1,3-dimethyl-2-imidazolinone and lithium nitrate(DMILiNO_(3))solvated ionic liquid were measured as a function of temperature.Additionally,the electrochemical mechanism an...The density,conductivity,and viscosity of the 1,3-dimethyl-2-imidazolinone and lithium nitrate(DMILiNO_(3))solvated ionic liquid were measured as a function of temperature.Additionally,the electrochemical mechanism and electrodeposition of neodymium from the DMI-LiNO_(3) solvated ionic liquid were investigated.Cyclic voltammetry results indicate that the electrochemical reduction of Nd(Ⅲ)is irreversible and proceeds via one-step with three-electron transfer,which is controlled by diffusion with a diffusion coefficient of 5.08×10^(-8) cm^(2)/s.Energydispersive X-ray spectrometry and X-ray photoelectron spectroscopy data confirm that the electrodeposit obtained after electrodeposition at-4 V(vs Ag)using the DMI-LiNO_(3)-Nd(CF_(3)SO_(3))_(3) solvated ionic liquid contains metallic neodymium.展开更多
Thirty sediment subsamples were recovered from the Iheya North hydrothermal field (with an average of 38 m away from the hydrothermal vent) in the middle Okinawa Trough. Samples were obtained by the ROV (Remote Ope...Thirty sediment subsamples were recovered from the Iheya North hydrothermal field (with an average of 38 m away from the hydrothermal vent) in the middle Okinawa Trough. Samples were obtained by the ROV (Remote Operated Vehicle) Faxian during the virgin cruise of the R/V Kexue in 2014 with the application of push cores. The chemical compositions of the sediments show that the hydrothermal sediments near the hydrothermal vent are mainly composed of SO3, ZnO and Fe203. Moreover, the hydrothermal sediments are also highly enriched in Pb, As, Sb, Hg, Se, Ag, Ba, Mo and Cd comparing with previous analysis results. On the other hand, the concentrations of St, Hg andAg in studied sediments are strongly and positively correlated, these elements can be used as an hydrothermal indicator. In addition, a factor analysis of the sediments suggested that the sediments were mainly influenced by hydrothermal origin, and terrestrial and biogenic input are limited in studied area. It is also suggested that different stages of crystallization were involved in the formation of hydrothermal chimney from factor analysis.展开更多
The Xinqiao deposit is one of several polymetallic deposits in the Tongling ore district. There are two types of mineralization in the Xinqiao: skarn-type and stratiform-type. The skarn-type mineralization is charact...The Xinqiao deposit is one of several polymetallic deposits in the Tongling ore district. There are two types of mineralization in the Xinqiao: skarn-type and stratiform-type. The skarn-type mineralization is characterized by iron oxides such as magnetite and hematite, whereas stratiform-type mineralization is characterized by massive sulfides with small amounts of magnetite and hematite. We defined three types of ores within the strati- form-type mineralization by the mineral assemblages and ore structures. Type Ⅰ ore is represented by magnetite crosscut by minor calcite veins. Type Ⅱ is a network ore composed of magnetite and crosscutting pyrite. Type Ⅲ is a massive ore containing calcite and hematite. Type Ⅰ magnetite is characterized by highly variable trace element content, whereas Type Ⅱ magnetite has consistently higher Si, Ti, V, and Nb. Type Ⅲ magnetite contains more In, Sn, and As than the other two types. Fluid-rock interaction, oxygen fugacity (fO2), and temperature (T) are the main factors controlling element variation between the different magnetite types. Type I magnetite was formed by more extensive fluid-rock interaction than the other two types at moderate fO2 and T conditions. Type Ⅱ magnetite is thought to have formed in relatively low fO2 and high-Tenvironments, and Type Ⅲ in relatively high fOe and moderate-T environments. Ca + Al + Mn and Ti + V discrimination diagrams show that magnetite in the Xin qiao deposit is hydrothermal in origin and is possibly linked with skarn.展开更多
Since graphene was discovered, the study of two-dimensional(2D) materials with atomic thickness has become a hot spot. To prepare different 2D materials,different methods have been groped, such as mechanical exfoliati...Since graphene was discovered, the study of two-dimensional(2D) materials with atomic thickness has become a hot spot. To prepare different 2D materials,different methods have been groped, such as mechanical exfoliation, chemical vapor deposition(CVD), liquid-phase exfoliation. This review mainly introduced the sonication liquid-phase exfoliation, an effective method to prepare 2D materials. Compared with mechanical exfoliation and CVD methods, liquid-phase exfoliation is convenient and costeffective and provides high yield. We focused on both theoretical and experimental details of this method. This method was reviewed according to the development of 2D materials from graphene, h-BN to transition metal chalcogenides(TMDs) and black phosphorus nanosheets.We discussed the applications of liquid-exfoliated 2D materials including micro- and nanoelectrical devices,photoelectric devices, and energy storage devices.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41072230)Funding of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (SKLGP2012Z008)
文摘Valuable geological and environmental information can be obtained from the 200 m thick lacustrine sediments in the Diexi lake(an ancient landslide-dammed lake) of the Minjiang River. The shaking table test method was employed to study the disturbance phenomena which occurred in the Diexi lake sediments. The results show that the disturbance phenomena were caused by liquefaction-induced flows in the unconsolidated lacustrine sediments, due to triggering by earthquakes. The deformations only occurred in unconsolidated sediment layers and not in consolidated layers. This means that a consolidated layer cannot be liquefied and disturbed again by an earthquake for a second time. The disturbance on one layer corresponds to only one earthquake. The temporal occurrence of earthquakes could be determined by disturbance layers generated at different ages. In total, 10 disturbed layers were found in the lacustrine sediments of the Diexi lake. The experiments showed that there were more than 10 earthquakes between 30 ka B.P. and 15 ka B.P. in the Diexi lake area based on the dating of the disturbed sediment layers.
基金financial supports from the National Natural Science Foundation of China(Nos.52004062,52074084,51804070)the Natural Science Foundation of Liaoning Province of China(No.2020-MS-084)the Guangxi Innovation-Driven Development Program,China(No.GUIKE AA18118030)。
文摘The density,conductivity,and viscosity of the 1,3-dimethyl-2-imidazolinone and lithium nitrate(DMILiNO_(3))solvated ionic liquid were measured as a function of temperature.Additionally,the electrochemical mechanism and electrodeposition of neodymium from the DMI-LiNO_(3) solvated ionic liquid were investigated.Cyclic voltammetry results indicate that the electrochemical reduction of Nd(Ⅲ)is irreversible and proceeds via one-step with three-electron transfer,which is controlled by diffusion with a diffusion coefficient of 5.08×10^(-8) cm^(2)/s.Energydispersive X-ray spectrometry and X-ray photoelectron spectroscopy data confirm that the electrodeposit obtained after electrodeposition at-4 V(vs Ag)using the DMI-LiNO_(3)-Nd(CF_(3)SO_(3))_(3) solvated ionic liquid contains metallic neodymium.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA11030301,XDA11040301)
文摘Thirty sediment subsamples were recovered from the Iheya North hydrothermal field (with an average of 38 m away from the hydrothermal vent) in the middle Okinawa Trough. Samples were obtained by the ROV (Remote Operated Vehicle) Faxian during the virgin cruise of the R/V Kexue in 2014 with the application of push cores. The chemical compositions of the sediments show that the hydrothermal sediments near the hydrothermal vent are mainly composed of SO3, ZnO and Fe203. Moreover, the hydrothermal sediments are also highly enriched in Pb, As, Sb, Hg, Se, Ag, Ba, Mo and Cd comparing with previous analysis results. On the other hand, the concentrations of St, Hg andAg in studied sediments are strongly and positively correlated, these elements can be used as an hydrothermal indicator. In addition, a factor analysis of the sediments suggested that the sediments were mainly influenced by hydrothermal origin, and terrestrial and biogenic input are limited in studied area. It is also suggested that different stages of crystallization were involved in the formation of hydrothermal chimney from factor analysis.
基金supported by grants from the National Key R&D Program of China(2016YFC0600207)the Chinese 973 project(2012CB416804)+1 种基金the National Natural Science Foundation of China(41503039)the ‘‘CAS Hundred Talents’’Project to J.F.Gao(Y5CJ038000)
文摘The Xinqiao deposit is one of several polymetallic deposits in the Tongling ore district. There are two types of mineralization in the Xinqiao: skarn-type and stratiform-type. The skarn-type mineralization is characterized by iron oxides such as magnetite and hematite, whereas stratiform-type mineralization is characterized by massive sulfides with small amounts of magnetite and hematite. We defined three types of ores within the strati- form-type mineralization by the mineral assemblages and ore structures. Type Ⅰ ore is represented by magnetite crosscut by minor calcite veins. Type Ⅱ is a network ore composed of magnetite and crosscutting pyrite. Type Ⅲ is a massive ore containing calcite and hematite. Type Ⅰ magnetite is characterized by highly variable trace element content, whereas Type Ⅱ magnetite has consistently higher Si, Ti, V, and Nb. Type Ⅲ magnetite contains more In, Sn, and As than the other two types. Fluid-rock interaction, oxygen fugacity (fO2), and temperature (T) are the main factors controlling element variation between the different magnetite types. Type I magnetite was formed by more extensive fluid-rock interaction than the other two types at moderate fO2 and T conditions. Type Ⅱ magnetite is thought to have formed in relatively low fO2 and high-Tenvironments, and Type Ⅲ in relatively high fOe and moderate-T environments. Ca + Al + Mn and Ti + V discrimination diagrams show that magnetite in the Xin qiao deposit is hydrothermal in origin and is possibly linked with skarn.
基金supported by the National Basic Research Program of China(2014CB931700)the National Natural Science Foundation of China(61222403+1 种基金61307067)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Since graphene was discovered, the study of two-dimensional(2D) materials with atomic thickness has become a hot spot. To prepare different 2D materials,different methods have been groped, such as mechanical exfoliation, chemical vapor deposition(CVD), liquid-phase exfoliation. This review mainly introduced the sonication liquid-phase exfoliation, an effective method to prepare 2D materials. Compared with mechanical exfoliation and CVD methods, liquid-phase exfoliation is convenient and costeffective and provides high yield. We focused on both theoretical and experimental details of this method. This method was reviewed according to the development of 2D materials from graphene, h-BN to transition metal chalcogenides(TMDs) and black phosphorus nanosheets.We discussed the applications of liquid-exfoliated 2D materials including micro- and nanoelectrical devices,photoelectric devices, and energy storage devices.