In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential ro...In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential role in areas of sparse well coverage.We describe sedimentary facies characteristics,sand body planforms,width and connectivity patterns of sand bodies,and vertical associations and successions by acoustic impedance inversion technology and sedimentological theory.Results of our study show braided fluvial strata deposits in the Jurassic Badaowan formation.Each sand body is approximately lenticular in shape.The width of each sand body falls in the range 100~800 m,with most between 200 and 400 m.The sand bodies vary in thickness from 4 to 13 m,with most below 9 m.The width/thickness ratios lie in the range 20~55.The connectivity of braided fluvial channel sand bodies is controlled by changes of accommodation space.One fining-upward sedimentary cycle of base-level rise is recognized in Badaowan formation,representing an upward rise of base level.The connectivity of sand bodies was found to be greatest in the early stage of base-level rise,becoming progressively worse with increasing base-level rise.展开更多
An extended one-dimensional stress model for the deposition of multilayer films is built based on the existing stress model by considering the influence of deposition conditions. Both thermal stress and intrinsic stre...An extended one-dimensional stress model for the deposition of multilayer films is built based on the existing stress model by considering the influence of deposition conditions. Both thermal stress and intrinsic stress are considered to constitute the final residual stress in the model. The deposition process conditions such as deposition temperature, oxygen pressure, and film growth rate are correlated to the full stress model to analyze the final residual stress distribution, and thus the deformation of the deposited multilayer system under different process conditions. Also, the model is numerically realized with in-house built code. A deposition of Ag-Cu multilayer system is simulated with the as-built extended stress model, and the final residual stresses under different deposition conditions are discussed with part of the results compared with experiment from other literature.展开更多
基金Financial support for this work,provided by the National Basic Research Program of China(No.2006 CB202300),
文摘In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential role in areas of sparse well coverage.We describe sedimentary facies characteristics,sand body planforms,width and connectivity patterns of sand bodies,and vertical associations and successions by acoustic impedance inversion technology and sedimentological theory.Results of our study show braided fluvial strata deposits in the Jurassic Badaowan formation.Each sand body is approximately lenticular in shape.The width of each sand body falls in the range 100~800 m,with most between 200 and 400 m.The sand bodies vary in thickness from 4 to 13 m,with most below 9 m.The width/thickness ratios lie in the range 20~55.The connectivity of braided fluvial channel sand bodies is controlled by changes of accommodation space.One fining-upward sedimentary cycle of base-level rise is recognized in Badaowan formation,representing an upward rise of base level.The connectivity of sand bodies was found to be greatest in the early stage of base-level rise,becoming progressively worse with increasing base-level rise.
基金supported by the National Natural Science Foundation of China(Grant Nos.51076075,91224008 and 91024032)
文摘An extended one-dimensional stress model for the deposition of multilayer films is built based on the existing stress model by considering the influence of deposition conditions. Both thermal stress and intrinsic stress are considered to constitute the final residual stress in the model. The deposition process conditions such as deposition temperature, oxygen pressure, and film growth rate are correlated to the full stress model to analyze the final residual stress distribution, and thus the deformation of the deposited multilayer system under different process conditions. Also, the model is numerically realized with in-house built code. A deposition of Ag-Cu multilayer system is simulated with the as-built extended stress model, and the final residual stresses under different deposition conditions are discussed with part of the results compared with experiment from other literature.