1 Electron velocity distributions and energy deposition of ECW Two set of soft X-ray spectra detection system consist of high performance sillicon drift detectors (SDD) , high speed A/D transform and processing soft...1 Electron velocity distributions and energy deposition of ECW Two set of soft X-ray spectra detection system consist of high performance sillicon drift detectors (SDD) , high speed A/D transform and processing software, software pulse height analyzer (SPHA). They are installed at mid plane ( r=0 ) and undermid plane ( r=-16.4 cm ) of HL-2A tokamak respectively to measure the time evolution of soft X-ray spectra. According to spectrum, the thermal electron and superthermal electron temperatures are derived. Because of the ratio of peak counts to background counts is very high (p/b 〉1 400-3000 ) ,展开更多
The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged ...The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term to account for the effects of vegetation.The three cases considered for open channels were two-stage rectangular channel with emerged vegetated floodplain,rectangular channel with submerged vegetated corner,and two-stage rectangular channel with submerged vegetated floodplain,respectively.To predict the depth-averaged velocity with submerged vegetated floodplains,we proposed a new method based on a two-layer approach where flow above and through the vegetation layer was described separately.Moreover,further experiments in the two-stage rectangular channel with submerged vegetated floodplain were carried out to verify the results.The analytical solutions of the cases indicated that the corresponding analytical depth-averaged velocity distributions agree well with the simulated and experimental prediction.The analytical solutions of the cases with theoretical foundation and without programming calculation were reasonable and applicable,which were more convenient than numerical simulations.The analytical solutions provided a way for future researches to solve the problems of submerged vegetation and discontinuous phenomenon of depth-averaged velocity at the stage point for compound channels.Understanding the hydraulics of flow in compound channels with vegetated floodplains is very important for supporting the management of fluvial processes.展开更多
A Lagrangian model is used to evaluate source regions of particles collected in the sediment traps at the DYFAMED (Dy namique des Flux Atmospheriques en Mediterranee) station by tracking particles backwards from Mar...A Lagrangian model is used to evaluate source regions of particles collected in the sediment traps at the DYFAMED (Dy namique des Flux Atmospheriques en Mediterranee) station by tracking particles backwards from March 1 to August 31, 2001. The analysis suggests that source regions depend on the flow fields, the settling speed of the particles, and the deployment depths of the traps. Monthly variation is observed in the distribution patterns of source regions, which is caused by the currents The source regions are located around the traps and up to hundreds of kilometers away. As the settling speed increases with the particle diameters, the distance to the source regions decreases. The vertical flux can be approximately estimated in 1D for the particles with diameters larger than 500 lain. Furthermore, traps moored at various depths at the DYFAMED can collect parti- cles that originated from different regions in the Ligurian Sea.展开更多
文摘1 Electron velocity distributions and energy deposition of ECW Two set of soft X-ray spectra detection system consist of high performance sillicon drift detectors (SDD) , high speed A/D transform and processing software, software pulse height analyzer (SPHA). They are installed at mid plane ( r=0 ) and undermid plane ( r=-16.4 cm ) of HL-2A tokamak respectively to measure the time evolution of soft X-ray spectra. According to spectrum, the thermal electron and superthermal electron temperatures are derived. Because of the ratio of peak counts to background counts is very high (p/b 〉1 400-3000 ) ,
基金Under the auspices of National Basic Research Program of China(No.2011CB403303)National Key Research and Development Program of China(No.2016YFC0402408-5)National Natural Science Foundation of China(No.51179181,40788001)
文摘The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term to account for the effects of vegetation.The three cases considered for open channels were two-stage rectangular channel with emerged vegetated floodplain,rectangular channel with submerged vegetated corner,and two-stage rectangular channel with submerged vegetated floodplain,respectively.To predict the depth-averaged velocity with submerged vegetated floodplains,we proposed a new method based on a two-layer approach where flow above and through the vegetation layer was described separately.Moreover,further experiments in the two-stage rectangular channel with submerged vegetated floodplain were carried out to verify the results.The analytical solutions of the cases indicated that the corresponding analytical depth-averaged velocity distributions agree well with the simulated and experimental prediction.The analytical solutions of the cases with theoretical foundation and without programming calculation were reasonable and applicable,which were more convenient than numerical simulations.The analytical solutions provided a way for future researches to solve the problems of submerged vegetation and discontinuous phenomenon of depth-averaged velocity at the stage point for compound channels.Understanding the hydraulics of flow in compound channels with vegetated floodplains is very important for supporting the management of fluvial processes.
基金supported by the National Natural Science Foundation of China(Grant No.40821004)Public Science and Technology Research Funds Projects of Ocean(Grant No.201005030)+1 种基金the National Natural Science Foundation of China(Grant No.41276186)the Program of Nanjing University of Information Science and Technology(Grant No.S8111005001)
文摘A Lagrangian model is used to evaluate source regions of particles collected in the sediment traps at the DYFAMED (Dy namique des Flux Atmospheriques en Mediterranee) station by tracking particles backwards from March 1 to August 31, 2001. The analysis suggests that source regions depend on the flow fields, the settling speed of the particles, and the deployment depths of the traps. Monthly variation is observed in the distribution patterns of source regions, which is caused by the currents The source regions are located around the traps and up to hundreds of kilometers away. As the settling speed increases with the particle diameters, the distance to the source regions decreases. The vertical flux can be approximately estimated in 1D for the particles with diameters larger than 500 lain. Furthermore, traps moored at various depths at the DYFAMED can collect parti- cles that originated from different regions in the Ligurian Sea.