The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions,such as oxidation reaction,hydrolysis reaction and neutralization reaction.It is hard...The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions,such as oxidation reaction,hydrolysis reaction and neutralization reaction.It is hard to accurately establish a mathematical model of the process featured by strong nonlinearity,uncertainty and time-delay.A modeling method based on time-delay fuzzy gray cognitive network(T-FGCN)for the goethite iron precipitation process was proposed in this paper.On the basis of the process mechanism,experts’practical experience and historical data,the T-FGCN model of the goethite iron precipitation system was established and the weights were studied by using the nonlinear hebbian learning(NHL)algorithm with terminal constraints.By analyzing the system in uncertain environment of varying degrees,in the environment of high uncertainty,the T-FGCN can accurately simulate industrial systems with large time-delay and uncertainty and the simulated system can converge to steady state with zero gray scale or a small one.展开更多
Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium ...Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium dodecyl sulfonate concentration were investigated.Electrochemical experiments demonstrate that iron's electrodeposition plays a leading role in the Ni-Fe co-deposition process,and the co-deposition nucleation mechanism accords with a progressive nucleation.Temperature increase does favor in increasing nickel content in the ferronickel(Ni-Fe co-deposition products),while Fe^(2+) concentration increase does not.When solution pH is higher than 3.5,nickel content in the ferronickel decreases with pH because of the hydrolysis of Fe^(2+).With the current density of 180 A/m^2,Na_2SO_4 concentration of 100 g/L and Ni^(2+) concentration of 60 g/L,a smooth ferronickel deposit containing 96.21% Ni can be obtained under the conditions of temperature of 60 °C,Fe^(2+) concentration of 0.3 g/L,solution pH of 3 and sodium dodecyl sulfonate concentration of 40 mg/L.展开更多
We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on a...We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300-1150 cm2/(V.s).展开更多
基金Project(61673399)supported by the National Natural Science Foundation of ChinaProject(2017JJ2329)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018zzts550)supported by the Fundamental Research Funds for Central Universities,China
文摘The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions,such as oxidation reaction,hydrolysis reaction and neutralization reaction.It is hard to accurately establish a mathematical model of the process featured by strong nonlinearity,uncertainty and time-delay.A modeling method based on time-delay fuzzy gray cognitive network(T-FGCN)for the goethite iron precipitation process was proposed in this paper.On the basis of the process mechanism,experts’practical experience and historical data,the T-FGCN model of the goethite iron precipitation system was established and the weights were studied by using the nonlinear hebbian learning(NHL)algorithm with terminal constraints.By analyzing the system in uncertain environment of varying degrees,in the environment of high uncertainty,the T-FGCN can accurately simulate industrial systems with large time-delay and uncertainty and the simulated system can converge to steady state with zero gray scale or a small one.
基金Project(51574135)supported by the National Natural Science Foundation of ChinaProject(KKPT201563022)supported by Collaborative Innovation Center of Kunming University of Science and Technology,China
文摘Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium dodecyl sulfonate concentration were investigated.Electrochemical experiments demonstrate that iron's electrodeposition plays a leading role in the Ni-Fe co-deposition process,and the co-deposition nucleation mechanism accords with a progressive nucleation.Temperature increase does favor in increasing nickel content in the ferronickel(Ni-Fe co-deposition products),while Fe^(2+) concentration increase does not.When solution pH is higher than 3.5,nickel content in the ferronickel decreases with pH because of the hydrolysis of Fe^(2+).With the current density of 180 A/m^2,Na_2SO_4 concentration of 100 g/L and Ni^(2+) concentration of 60 g/L,a smooth ferronickel deposit containing 96.21% Ni can be obtained under the conditions of temperature of 60 °C,Fe^(2+) concentration of 0.3 g/L,solution pH of 3 and sodium dodecyl sulfonate concentration of 40 mg/L.
文摘We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300-1150 cm2/(V.s).