Tracing erosion flux within a single catchment is one of the major targets for the Earth's Critical Zone science. The sedimentary succession in landslide-dammed reservoirs within the Chinese Loess Plateau(CLP) ser...Tracing erosion flux within a single catchment is one of the major targets for the Earth's Critical Zone science. The sedimentary succession in landslide-dammed reservoirs within the Chinese Loess Plateau(CLP) serves as a valuable archive of past erosion history. Deposition couplets and annual freeze–thaw layers were firstly identified for the sedimentary succession of the Jingbian reservoir on the northern CLP with high-resolution XRF core scanning. The deposition couplets in the reservoir since 1963 A.D. were further dated with ^(137) Cs activity. We found consistent one-to-one correspondence between couplet specific sediment yield and storm intensity. The reconstructed soil erosion history highlights the control of storm intensity and frequency on loess erosion on the northern CLP in the past hundreds of years.展开更多
基金financially supported by the 973Program(No.2013CB956402)National Natural Science Foundation of China(No.41225015)
文摘Tracing erosion flux within a single catchment is one of the major targets for the Earth's Critical Zone science. The sedimentary succession in landslide-dammed reservoirs within the Chinese Loess Plateau(CLP) serves as a valuable archive of past erosion history. Deposition couplets and annual freeze–thaw layers were firstly identified for the sedimentary succession of the Jingbian reservoir on the northern CLP with high-resolution XRF core scanning. The deposition couplets in the reservoir since 1963 A.D. were further dated with ^(137) Cs activity. We found consistent one-to-one correspondence between couplet specific sediment yield and storm intensity. The reconstructed soil erosion history highlights the control of storm intensity and frequency on loess erosion on the northern CLP in the past hundreds of years.