The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the ...The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.展开更多
[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered...[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered by Artemisia ordosica, Salix cheilophila, Hedysarum scoparium, Populus simonii and Amorpha fruticosa, all of which were planted artificially at the same year were measured in the present study, using a bare soil as the control. [Result] Artificial vegetation improved the soil physicochemical properties by different extents in the lands covered by different plants. The soil physicochemical properties such as bulk density under A. Fruticosa and H. Scoparium were improved greatly. The frequency distribution of soil particle size under artificial vegetations exhibited a bimodal curve. The average soil particle size under A. fruticosa was the smallest, and the soil was very poorly sorted. The soil nutrients in the sandy land were not significantly improved by artificial vegeta- tion. [Conclusion] Artificial vegetation has a certain impact on soil properties in sandy land, as it greatly improves the soil physical properties but not the chemical properties.展开更多
In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us De...In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us Desert were researched. The results indicated that vegetations in varied types have different effects on organic matter, total N, available N and available P, among which the first three were all higher in soils under closed grass, forest lands returned from farmlands, and fixed sandy lands than those under natural grass and abandoned lands. This was totally contrary with contents of available P in soil. In addition, nutrients in soils at 0-20 cm were more influenced by vegetation, than those at 20-60 cm, and Caragana Korshinskii proved better in improving nutrients in soils.展开更多
Taibus County, Inner Mongolia, China, lies in a farming-pastoral ecotone, where severe wind erosion and various aeolian sand hazards are prevalent and fixed and semi-fixed sand dunes occur frequently. This study was c...Taibus County, Inner Mongolia, China, lies in a farming-pastoral ecotone, where severe wind erosion and various aeolian sand hazards are prevalent and fixed and semi-fixed sand dunes occur frequently. This study was conducted to investigate the relationships between sand transportation rate and wind speed for the fixed and semi-fixed sand dunes based on field measurements. The annual quantity of soil erosion by wind was estimated using meteorological wind data. The results indicated that the sand transportation rate in Taibus County in 2000 was 57.38 kg cm-1 year-1 for the semi-fixed dunes and 4.56 kg cm-1 year-1 for the fixed dunes. The total duration of erosive winds covered 12.5% of the time of the year, and spring posed the highest potential of sand transportation. Wind with low speed (≤ 17 m s-1) and high frequency plays a dominant role in sand transportation, while strong wind (≥ 17 m s-1) with low frequency significantly enhanced the sand transportation. Erosive wind speed, directions, and frequency were three crucial dynamic factors influencing sand hazards in the farming-pastoral ecotone. The dominant factors intensifying sand and dust storms in Taibus County might be related to the favorable wind condition in combination with the durable drought, which led to land desertification and vegetation degradation.展开更多
By establishing the interpreting elements, and applying supervised classification, the sandy desertific- ation was interpreted and the desertified land areas of the counties in the western Jilin Province in 1986 and i...By establishing the interpreting elements, and applying supervised classification, the sandy desertific- ation was interpreted and the desertified land areas of the counties in the western Jilin Province in 1986 and in 2000 were obtained. Taking Tongyu and Qian’an as examples, the natural driving forces and man-made driving forces were analyzed. The paper comes the conclusions that the material sources and the warming and dry climate are the internal causes of potential land desertification; the irrational human activities, such as destroying forest and reclaiming the grassland, are the external causes of potential land desertification; while more rational human activities, such as planting trees and restoring grassland can reverse the land desertification. Furthermore, the countermeasures and suggestions for the development of agriculture and animal husbandry in the western Jilin Province are put forward.展开更多
The land desertification in Xinjiang was monitored and analyzed based on RS and GIS techniques. Satellite data interpretation was adopted to obtain the general situation of Xinjiang’s land desertification in assistan...The land desertification in Xinjiang was monitored and analyzed based on RS and GIS techniques. Satellite data interpretation was adopted to obtain the general situation of Xinjiang’s land desertification in assistance with the sampling method and on-the-spot investigations. Related monitoring and investigations showed that Xinjiang was facing with severe wide range land desertification, and its desertified area made up 77.08% of the total monitoring area. As for land types, the desertified farmland accounted for 1.92% of the total monitoring area, desertified woodland 4%, desertified grassland 45%, and unused land 49%. Accordingly, as for desertification degrees, non-desertified land occupied 22.92%, weak desertified land 5.69%, medium-degree desertified land 16.58%, severe desertified land 33.19% and super severe desertified land 21.61%. Finally, as for inducing factors, wind-eroded desertification made up 58.23%, water-eroded desertification 8.69%, salinization desertification 6.52% and frozen-melt eroded desertification 3.64%. Xinjiang’s land desertification tended to get worse and the harnessing mission remained hard.展开更多
Water-conserving membrane is a new material of improving sandy soil. It is based on the rule that a compound with organic and inorganic components can produce colloid after its integrating with Ca2+ in soil. The water...Water-conserving membrane is a new material of improving sandy soil. It is based on the rule that a compound with organic and inorganic components can produce colloid after its integrating with Ca2+ in soil. The water-conserving membrane will obstruct capillary and increase viscidity of sandy soil, so as to decrease leakage and evaporation in sandy soil. The water-conserving membrane contains polyacrylic acid (PAA) and bentonite. When PAA concentration and pH of solution are different, water-conserving membrane can be made in different depth of soil. This experiment shows that the solution with 0.2% PAA does not harm and poison the crops, on the contrary, promotes crop germination. The solution with 0.2% or 0.4% PAA can accelerate corn growth. Accordingly, different crops need the application of the different PAA concentrations in the cultivation. Therefore, on the basis of different vadose coefficient in sandy soil, the solution with different PAA concentration can improve sandy soil and increase its water-conserving competence very well. The solution can be used to improve sandy soil and control desert enlargement in arid, semi-arid and semi-humid areas.展开更多
Caragana microphylla Lam., a pioneer leguminous shrub species for vegetation re-establishment, is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region. Some soil chemical and physical proper...Caragana microphylla Lam., a pioneer leguminous shrub species for vegetation re-establishment, is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region. Some soil chemical and physical properties were measured under the canopy of C. microphylla and in the adjacent open areas to determine the effects of individual shrubs on soil properties. The influence of isolated C. microphylla on chemical and physical properties of the topsoil was significantly different between plots under the shrub canopy and in the shrub interspaces. Beneath the shrub canopy greater amounts of fine particle fractions, a higher water-holding capacity, and a lower bulk density, as well as higher aboveground and belowground litter biomass were found. Soil organic C and total N concentrations were 23%-31.6% and 14%-27.2% higher under the shrub canopies than in the shrub interspaces, respectively, giving rise to 'islands of fertility'. In a desertified sandy grassland ecosystem, C. microphylla was believed to play a major role in organic C sequestration, N accumulation, and the hydrologic cycle. Additionally, it has been found to be of ecological importance for vegetative restoration and reversal of desertification.展开更多
Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate p...Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.展开更多
In recent years, the ecological environment in the upper reaches of the Yellow River has been degraded due to natural and human factors. Environmental problems such as grassland degeneration, sandy desertification and...In recent years, the ecological environment in the upper reaches of the Yellow River has been degraded due to natural and human factors. Environmental problems such as grassland degeneration, sandy desertification and water erosion have seriously affected regional economic sustainable development. The objective of this paper was to detect sandy desertification in the upper reaches of the Yellow River by means of remote sensing and GIS. The Gonghe Basin was chosen as the study site, which is one of the most seriously degraded regions in the area. Based on an analysis of the multi-temporal and multi-spectral Landsat TM data with GIS, sandy desertification processes were detected. The results show that sandy desertified land has increased and intensified seriously in the upper reaches of the Yellow River for the period from 1987 to 1996. There are two desertification processes at work in the study area: sand dune reactivation and development of badlands through wind erosion. Excessive human activities play an important role in the occurrence and development of desertification in this area. At present, acceleration of the desertification process is attributed to irrational human economic activities. Grasslands as well as the ecological environment of this area have been seriously degraded, which has affected the regional economic sustainable development and endangered the security of the Longyangxia reservoir. It is necessary and urgent to combat desertification and protect the environment. The results show that full use of remote sensing data with GIS in monitoring and assessing desertification is an effective measure of quantitative research.展开更多
It is difficult to afforest in rock desertification region and is the key area for eco-environment treatment. To speed up the comprehensive treatment of rock desertification, several anti-rock desertification modes im...It is difficult to afforest in rock desertification region and is the key area for eco-environment treatment. To speed up the comprehensive treatment of rock desertification, several anti-rock desertification modes implemented in Dingtan region, located on the right bank of Huajiang Grand Valley in Beipanjiang Town, are introduced as examples. This paper first analyzes the natural and environmental conditions, the development of rock desertification in the Dingtan region, then the detail of the treatment modes, such as “Chinese wingleaf pricklyash – pig breeding – marsh gas” (Mode One), “amomum villosum – pig breeding – marsh gas” mode (Mode Two), “traditional grain and economic crop (corn, peanut) – amomum villosum or Chinese wingleaf pricklyash” (Mode Three), etc. The eco-economic effects, potential and shortcomings of the above mentioned modes are analyzed and compared. It is proved that Mode One and Mode Two are of good economic effect, but Mode Three of better ecological effect. Solutions to the shortcomings of the modes are also put forward.展开更多
Keerqin sand land is located in the transitional terrain between the Northeast Plain and Inner Mongolia (42°41′-45°15′N, 118°35′-123°30′ E) in Northeast China and it is seriously affected by ...Keerqin sand land is located in the transitional terrain between the Northeast Plain and Inner Mongolia (42°41′-45°15′N, 118°35′-123°30′ E) in Northeast China and it is seriously affected by desertification. According to the configuration and ecotope of the earths surface, the coverage of vegetation, occupation ratio of bare sandy land and the soil texture were selected as evaluation indexes by using the field investigation data. The evaluation index system of Keerqin sandy desertification was established by using Remote Sensing data. and the occupation ratio of bare sandy land was obtained by mixed spectrum model. This index system is validated by the field investioation data and results indicate that it is suitable for the desertification evaluation of Keerqin.Foundation Item: This study is supported by a grant from the National Natural Science Foundation of China (No. 30371192)展开更多
Soil organisms in terrestrial systems are unevenly distributed in time and space, and often aggregated. Spatiotemporal patchiness in the soil environment is thought to be crucial for the maintenance of soil biodiversi...Soil organisms in terrestrial systems are unevenly distributed in time and space, and often aggregated. Spatiotemporal patchiness in the soil environment is thought to be crucial for the maintenance of soil biodiversity, providing diverse microhabitats tightly interweaving with resource partitioning. Determination of a "scale unit" to help understand ecological processes has become one of the important and most debatable problems in recent years. A fieldwork was carried out in the northern Negev Desert highland, Israel to determine the influence of fine-scale landscape patch moisture heterogeneity on biogeochemical variables and microbial activity linkage in a desert ecosystem. The results showed that the spatio-temporal patchiness of soil moisture to which we attribute influential properties, was found to become more heterogenic with the decrease in soil moisture availability (from 8.2 to 0.4 g kg^-1) toward the hot, dry seasons, with coefficient of variation (CV) change amounting to 66.9%. Spatio-temporal distribution of organic matter (OM) and total soluble nitrogen (TSN) was found to be relatively uniformly distributed throughout the wet seasons (winter and spring), with increase of relatively high heterogeneity toward the dry seasons (from 0.25% to 2.17% for OM, and from 0 to 10.2 mg kg^-1 for TSN) with CV of 47.4% and 99.7% for OM and TSN, respectively. Different spatio-temporal landscape patterns were obtained for Ca (CV = 44.6%), K (CV = 34.4%), and Na (CV = 92%) ions throughout the study period. CO2 evolution (CV = 48.6%) was found to be of lower heterogeneity (varying between 2 and 39 g CO2-C g^-1 dry soil h^-1) in the moist seasons, e.g., winter and spring, with lower values of respiration coupled with high heterogeneity of Na^+ and low levels of TSN and organic matter content, and with more homogeneity in the dry seasons (varying between 1 and 50 g CO2-C g^-1 dry soil h^-1). Our results elucidate the heterogeneity and complexity of desert system habitats affecting soil biota activity.展开更多
According to a long series of measured sediment data, the sedimentation effects of the Dongting Lake Area (DIP,) were studied in light of the relationship between sedimentation characteristics and resources and envi...According to a long series of measured sediment data, the sedimentation effects of the Dongting Lake Area (DIP,) were studied in light of the relationship between sedimentation characteristics and resources and environment. The result shows that the long-term deposition and the impact of human activities have led to a cycle of the evolution of sedimentation pattern, resulting in sediment disaster effects and resources effects in the DLA. The main features are as follows: 1) The water beach, silt beach, lake marsh beach, reed beach and other types of beach shaped by sedimentation effects constitute the main body of the giant lake system. 2) The disaster chains are induced, i.e., sedimentation → marshland expansion and reclamation → flood function decline, fish resource depletion, biodiversity reduction dis- aster chain, sedimentation → marshland expansion → floods, water pollution disaster chain, sedimentation → marshland floating vegetation rising → schistosomiasis, rodents virulence disaster chain, sedimentation → flood embankment bursting → land desertification disaster chain. 3) Sedimentation has created about 98.13×10^4 hm^2 of land in the past 55 years. Rational development and utilization of marshland resources have produced tremendous economic benefits.展开更多
The effects of soil animals on soil nitrogen (N) mineralization and its availability were studied by investigating soil animal groups and their amounts of macro-faunas sorted by hand, and middle and microfaunas distin...The effects of soil animals on soil nitrogen (N) mineralization and its availability were studied by investigating soil animal groups and their amounts of macro-faunas sorted by hand, and middle and microfaunas distinguished with Tullgren and Baermann methods under three Pinus sylvestris var. mongolica Litv. plantations in Zhanggutai sandy land, China. In addition, soil N mineralization rate was also measured with PVC closed-top tube in situ incubation method. The soil animals collected during growing season belonged to 13 orders, 5 groups, 4 phyla, whose average density was 86 249.17 individuals·m^(-2). There were significant differences in soil animal species, densities, diversities and evenness among three plantations. Permanent grazing resulted in decrease of soil animal species and diversity. The average ammonification, nitrification and mineralization rates were 0.48 g·m^(-2)·a^(-1), 3.68 g·m^(-2)·a^(-1) and 4.16 g·m^(-2)·a^(-1), respectively. The ammonification rate in near-mature forest was higher than that in middle-age forests, while the order of nitrification and net mineralization rates was: middle-age forest without grazing < middle-age forest with grazing < near-mature forest with grazing (P<0.05). Soil N mineralization rate increased with soil animal amounts, but no significant relationship with diversity. The contribution of soil animals to N mineralization was different for different ecosystems due to influences of complex factors including grazing, soil characteristics, the quality and amount of litter on N mineralization.展开更多
As the main body of Qinghai-Tibetan Plateau, North Tibet Plateau is one of three major sandy desertification regions in China and also a representative sandy desertification zone of Qinghai-Tibet Plateau. Accordingly,...As the main body of Qinghai-Tibetan Plateau, North Tibet Plateau is one of three major sandy desertification regions in China and also a representative sandy desertification zone of Qinghai-Tibet Plateau. Accordingly, it is an important region for the study of recent sandy desertification processes and formation mechanism. From such aspects as desertified land types, areas and distributions etc., this paper analyses in detail the sandy desertification status on North Tibet Plateau, and qualitatively and quantitatively deals with the main factors that affect recent sandy desertification processes and the driving mechanism. Research results show that North Tibet Plateau is an important sandy desertification region in China characterized with large desertified land areas, diversified types, high severity, extensive distributions and serious damages. Sandy desertification occurrence and development resulted from combined effects of natural factors, anthropogenic factors, natural processes and man-made processes, of which climatic change is the main driving force.展开更多
Afforestation in sandy soils can cause soil acidification and affect Cu and Zn release. The behaviors of Cu and Zn release from contaminated arable sandy soils were investigated in the laboratory with the methods of s...Afforestation in sandy soils can cause soil acidification and affect Cu and Zn release. The behaviors of Cu and Zn release from contaminated arable sandy soils were investigated in the laboratory with the methods of simulated acidification of the soils. The results showed that soil acidification could change chemical forms of Cu and Zn in the soils, impel the transformation of Cu and Zn from carbonate associated fractions to exchangeable, organic matter and oxides associated fractions, and thus increase the release potential of Cu and Zn in the soils. The effect of the acidification on Zn leaching was more significant than that of Cu. Water solubility of Cu and Zn in the soils was increased with decreasing pH, and the solubility of Cu and Zn was increased exponentially at pH 3.8-4.5, and 6.2-6.5, respectively.展开更多
The soils in the South China Sea Islands (SCSI) were divided into three types, namely, phospho-calc soils,skeletisols and coastic solonchaks, which were derived from bio-clastic and strongly calcareous sediments. Inco...The soils in the South China Sea Islands (SCSI) were divided into three types, namely, phospho-calc soils,skeletisols and coastic solonchaks, which were derived from bio-clastic and strongly calcareous sediments. Incomparison with their parent materials, the phospho-calc soils have higher contents of P, Zn, Cu, Ba, and Cd,which tend to increase gradually with time, and lower contents of Mg, Ca, Sr, B, V, Pb, and Mo, which tendto decrease by degrees with time. The above-mentioned constitnents in skeletisols and coastic solonchaks aresimilar to those in their parent materials except for P and Na. The factors atfecting element distribution aremainly special bioclimate and parent material, meanwhile, resulting in the remarkable iulluence on elementdistribution through soil-forming time.展开更多
Soil erosion by water is one of the most important land degradation processes in the sloping rainfed lands in Pakistan. A study was conducted in the Dhrabi watershed of Pakistan to evaluate sediment yield associated w...Soil erosion by water is one of the most important land degradation processes in the sloping rainfed lands in Pakistan. A study was conducted in the Dhrabi watershed of Pakistan to evaluate sediment yield associated with rainfall-runoff under various land-use practices. Five sub-catchments with sizes varying from 1.5 to 350 ha were selected for measurement of rainfall, runoff and sediment yield. Soil conservation techniques were also introduced to reduce the soil erosion. All runoff events occurred in the summer especially during monsoon season (July-September). Sediment yield of two small gully catchments ranged from 4.79 to 8.34 t/ha/yr in 2009, a relatively dry year. In 2010, the annual sediment yield was 8.15 to 12.31 t/ha. Terraced catchment with arable crops produced annual 4.1 t/ha of sediment as compared to 12.31 t/ha by the adjacent gully catchment showing high potential of terraces in reducing erosion. Runoff coefficients calculated for these catchments vary from 0.09 to 0.75. The macro and micro nutrients present in the sediment indicate that these nutrients are being depleted due to soil erosion.展开更多
基金This research was supported by Key Knowledge Innova-tion Project (SCXZD0102) of Institute of Applied Ecology Chinese Academy of Sciences and sponsored by the Science and Technology Department of Inner Mongolia Autonomic Region,P. R. China (2001010)
文摘The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.
基金Supported by National Key Technology Research and Development Program during the 12th Five-year Plan Period(2012BAD16B0202)Special Fund for Forest Scientific Research in the Public Interest(201004018)~~
文摘[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered by Artemisia ordosica, Salix cheilophila, Hedysarum scoparium, Populus simonii and Amorpha fruticosa, all of which were planted artificially at the same year were measured in the present study, using a bare soil as the control. [Result] Artificial vegetation improved the soil physicochemical properties by different extents in the lands covered by different plants. The soil physicochemical properties such as bulk density under A. Fruticosa and H. Scoparium were improved greatly. The frequency distribution of soil particle size under artificial vegetations exhibited a bimodal curve. The average soil particle size under A. fruticosa was the smallest, and the soil was very poorly sorted. The soil nutrients in the sandy land were not significantly improved by artificial vegeta- tion. [Conclusion] Artificial vegetation has a certain impact on soil properties in sandy land, as it greatly improves the soil physical properties but not the chemical properties.
基金Supported by Projects in the National Science&Technology Pillar Program during the Twelfth Five-Year Plan Period(2012BAD16B0202)National Natural Science Foundation of China(41171002)Scientific Research Foundation of Beijing Normal University~~
文摘In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us Desert were researched. The results indicated that vegetations in varied types have different effects on organic matter, total N, available N and available P, among which the first three were all higher in soils under closed grass, forest lands returned from farmlands, and fixed sandy lands than those under natural grass and abandoned lands. This was totally contrary with contents of available P in soil. In addition, nutrients in soils at 0-20 cm were more influenced by vegetation, than those at 20-60 cm, and Caragana Korshinskii proved better in improving nutrients in soils.
基金supported by the National Natural Science Foundation of China (No.40771021)the Ministry of Education ofChina (No.20070027020)the Ministry of Science & Technology of China (Nos.2006BAD20B03 and 2006BAD20B02).
文摘Taibus County, Inner Mongolia, China, lies in a farming-pastoral ecotone, where severe wind erosion and various aeolian sand hazards are prevalent and fixed and semi-fixed sand dunes occur frequently. This study was conducted to investigate the relationships between sand transportation rate and wind speed for the fixed and semi-fixed sand dunes based on field measurements. The annual quantity of soil erosion by wind was estimated using meteorological wind data. The results indicated that the sand transportation rate in Taibus County in 2000 was 57.38 kg cm-1 year-1 for the semi-fixed dunes and 4.56 kg cm-1 year-1 for the fixed dunes. The total duration of erosive winds covered 12.5% of the time of the year, and spring posed the highest potential of sand transportation. Wind with low speed (≤ 17 m s-1) and high frequency plays a dominant role in sand transportation, while strong wind (≥ 17 m s-1) with low frequency significantly enhanced the sand transportation. Erosive wind speed, directions, and frequency were three crucial dynamic factors influencing sand hazards in the farming-pastoral ecotone. The dominant factors intensifying sand and dust storms in Taibus County might be related to the favorable wind condition in combination with the durable drought, which led to land desertification and vegetation degradation.
基金The Key Project of Chinese Academy of Sciences(No.KZCX1-SW-19)
文摘By establishing the interpreting elements, and applying supervised classification, the sandy desertific- ation was interpreted and the desertified land areas of the counties in the western Jilin Province in 1986 and in 2000 were obtained. Taking Tongyu and Qian’an as examples, the natural driving forces and man-made driving forces were analyzed. The paper comes the conclusions that the material sources and the warming and dry climate are the internal causes of potential land desertification; the irrational human activities, such as destroying forest and reclaiming the grassland, are the external causes of potential land desertification; while more rational human activities, such as planting trees and restoring grassland can reverse the land desertification. Furthermore, the countermeasures and suggestions for the development of agriculture and animal husbandry in the western Jilin Province are put forward.
文摘The land desertification in Xinjiang was monitored and analyzed based on RS and GIS techniques. Satellite data interpretation was adopted to obtain the general situation of Xinjiang’s land desertification in assistance with the sampling method and on-the-spot investigations. Related monitoring and investigations showed that Xinjiang was facing with severe wide range land desertification, and its desertified area made up 77.08% of the total monitoring area. As for land types, the desertified farmland accounted for 1.92% of the total monitoring area, desertified woodland 4%, desertified grassland 45%, and unused land 49%. Accordingly, as for desertification degrees, non-desertified land occupied 22.92%, weak desertified land 5.69%, medium-degree desertified land 16.58%, severe desertified land 33.19% and super severe desertified land 21.61%. Finally, as for inducing factors, wind-eroded desertification made up 58.23%, water-eroded desertification 8.69%, salinization desertification 6.52% and frozen-melt eroded desertification 3.64%. Xinjiang’s land desertification tended to get worse and the harnessing mission remained hard.
基金Undertheauspicesof the of Ministry of ScienceandTechnologyofChina(No.2001BA508B05)
文摘Water-conserving membrane is a new material of improving sandy soil. It is based on the rule that a compound with organic and inorganic components can produce colloid after its integrating with Ca2+ in soil. The water-conserving membrane will obstruct capillary and increase viscidity of sandy soil, so as to decrease leakage and evaporation in sandy soil. The water-conserving membrane contains polyacrylic acid (PAA) and bentonite. When PAA concentration and pH of solution are different, water-conserving membrane can be made in different depth of soil. This experiment shows that the solution with 0.2% PAA does not harm and poison the crops, on the contrary, promotes crop germination. The solution with 0.2% or 0.4% PAA can accelerate corn growth. Accordingly, different crops need the application of the different PAA concentrations in the cultivation. Therefore, on the basis of different vadose coefficient in sandy soil, the solution with different PAA concentration can improve sandy soil and increase its water-conserving competence very well. The solution can be used to improve sandy soil and control desert enlargement in arid, semi-arid and semi-humid areas.
基金Project supported by the National Natural Science Foundation of China (Nos. 40471004 and 40471083)the Innovation Foundation from the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (No. 2004110)
文摘Caragana microphylla Lam., a pioneer leguminous shrub species for vegetation re-establishment, is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region. Some soil chemical and physical properties were measured under the canopy of C. microphylla and in the adjacent open areas to determine the effects of individual shrubs on soil properties. The influence of isolated C. microphylla on chemical and physical properties of the topsoil was significantly different between plots under the shrub canopy and in the shrub interspaces. Beneath the shrub canopy greater amounts of fine particle fractions, a higher water-holding capacity, and a lower bulk density, as well as higher aboveground and belowground litter biomass were found. Soil organic C and total N concentrations were 23%-31.6% and 14%-27.2% higher under the shrub canopies than in the shrub interspaces, respectively, giving rise to 'islands of fertility'. In a desertified sandy grassland ecosystem, C. microphylla was believed to play a major role in organic C sequestration, N accumulation, and the hydrologic cycle. Additionally, it has been found to be of ecological importance for vegetative restoration and reversal of desertification.
基金Projects(51978244,51979088,51608169)supported by the National Natural Science Foundation of China。
文摘Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.
基金Project 40071066 supported by National Natural Science Foundation of China
文摘In recent years, the ecological environment in the upper reaches of the Yellow River has been degraded due to natural and human factors. Environmental problems such as grassland degeneration, sandy desertification and water erosion have seriously affected regional economic sustainable development. The objective of this paper was to detect sandy desertification in the upper reaches of the Yellow River by means of remote sensing and GIS. The Gonghe Basin was chosen as the study site, which is one of the most seriously degraded regions in the area. Based on an analysis of the multi-temporal and multi-spectral Landsat TM data with GIS, sandy desertification processes were detected. The results show that sandy desertified land has increased and intensified seriously in the upper reaches of the Yellow River for the period from 1987 to 1996. There are two desertification processes at work in the study area: sand dune reactivation and development of badlands through wind erosion. Excessive human activities play an important role in the occurrence and development of desertification in this area. At present, acceleration of the desertification process is attributed to irrational human economic activities. Grasslands as well as the ecological environment of this area have been seriously degraded, which has affected the regional economic sustainable development and endangered the security of the Longyangxia reservoir. It is necessary and urgent to combat desertification and protect the environment. The results show that full use of remote sensing data with GIS in monitoring and assessing desertification is an effective measure of quantitative research.
基金This work is supported by the National Natural Science Foundation of China (Grant No.40261002/ 40561006).
文摘It is difficult to afforest in rock desertification region and is the key area for eco-environment treatment. To speed up the comprehensive treatment of rock desertification, several anti-rock desertification modes implemented in Dingtan region, located on the right bank of Huajiang Grand Valley in Beipanjiang Town, are introduced as examples. This paper first analyzes the natural and environmental conditions, the development of rock desertification in the Dingtan region, then the detail of the treatment modes, such as “Chinese wingleaf pricklyash – pig breeding – marsh gas” (Mode One), “amomum villosum – pig breeding – marsh gas” mode (Mode Two), “traditional grain and economic crop (corn, peanut) – amomum villosum or Chinese wingleaf pricklyash” (Mode Three), etc. The eco-economic effects, potential and shortcomings of the above mentioned modes are analyzed and compared. It is proved that Mode One and Mode Two are of good economic effect, but Mode Three of better ecological effect. Solutions to the shortcomings of the modes are also put forward.
基金This study is supported by a grant from the National Natural Science Foundation of China (No. 30371192)
文摘Keerqin sand land is located in the transitional terrain between the Northeast Plain and Inner Mongolia (42°41′-45°15′N, 118°35′-123°30′ E) in Northeast China and it is seriously affected by desertification. According to the configuration and ecotope of the earths surface, the coverage of vegetation, occupation ratio of bare sandy land and the soil texture were selected as evaluation indexes by using the field investigation data. The evaluation index system of Keerqin sandy desertification was established by using Remote Sensing data. and the occupation ratio of bare sandy land was obtained by mixed spectrum model. This index system is validated by the field investioation data and results indicate that it is suitable for the desertification evaluation of Keerqin.Foundation Item: This study is supported by a grant from the National Natural Science Foundation of China (No. 30371192)
文摘Soil organisms in terrestrial systems are unevenly distributed in time and space, and often aggregated. Spatiotemporal patchiness in the soil environment is thought to be crucial for the maintenance of soil biodiversity, providing diverse microhabitats tightly interweaving with resource partitioning. Determination of a "scale unit" to help understand ecological processes has become one of the important and most debatable problems in recent years. A fieldwork was carried out in the northern Negev Desert highland, Israel to determine the influence of fine-scale landscape patch moisture heterogeneity on biogeochemical variables and microbial activity linkage in a desert ecosystem. The results showed that the spatio-temporal patchiness of soil moisture to which we attribute influential properties, was found to become more heterogenic with the decrease in soil moisture availability (from 8.2 to 0.4 g kg^-1) toward the hot, dry seasons, with coefficient of variation (CV) change amounting to 66.9%. Spatio-temporal distribution of organic matter (OM) and total soluble nitrogen (TSN) was found to be relatively uniformly distributed throughout the wet seasons (winter and spring), with increase of relatively high heterogeneity toward the dry seasons (from 0.25% to 2.17% for OM, and from 0 to 10.2 mg kg^-1 for TSN) with CV of 47.4% and 99.7% for OM and TSN, respectively. Different spatio-temporal landscape patterns were obtained for Ca (CV = 44.6%), K (CV = 34.4%), and Na (CV = 92%) ions throughout the study period. CO2 evolution (CV = 48.6%) was found to be of lower heterogeneity (varying between 2 and 39 g CO2-C g^-1 dry soil h^-1) in the moist seasons, e.g., winter and spring, with lower values of respiration coupled with high heterogeneity of Na^+ and low levels of TSN and organic matter content, and with more homogeneity in the dry seasons (varying between 1 and 50 g CO2-C g^-1 dry soil h^-1). Our results elucidate the heterogeneity and complexity of desert system habitats affecting soil biota activity.
基金Key Discipline Building Program on Physical Geography of Hunan ProvinceProject for Science & Tech-nology of Hunan Province,No.2007Fj302
文摘According to a long series of measured sediment data, the sedimentation effects of the Dongting Lake Area (DIP,) were studied in light of the relationship between sedimentation characteristics and resources and environment. The result shows that the long-term deposition and the impact of human activities have led to a cycle of the evolution of sedimentation pattern, resulting in sediment disaster effects and resources effects in the DLA. The main features are as follows: 1) The water beach, silt beach, lake marsh beach, reed beach and other types of beach shaped by sedimentation effects constitute the main body of the giant lake system. 2) The disaster chains are induced, i.e., sedimentation → marshland expansion and reclamation → flood function decline, fish resource depletion, biodiversity reduction dis- aster chain, sedimentation → marshland expansion → floods, water pollution disaster chain, sedimentation → marshland floating vegetation rising → schistosomiasis, rodents virulence disaster chain, sedimentation → flood embankment bursting → land desertification disaster chain. 3) Sedimentation has created about 98.13×10^4 hm^2 of land in the past 55 years. Rational development and utilization of marshland resources have produced tremendous economic benefits.
基金This research was supported by National Natural Science Foundation of China (30471377 & 30600473)the National Programs for Science and Technology Development of China (No. 2005BA517A03).
文摘The effects of soil animals on soil nitrogen (N) mineralization and its availability were studied by investigating soil animal groups and their amounts of macro-faunas sorted by hand, and middle and microfaunas distinguished with Tullgren and Baermann methods under three Pinus sylvestris var. mongolica Litv. plantations in Zhanggutai sandy land, China. In addition, soil N mineralization rate was also measured with PVC closed-top tube in situ incubation method. The soil animals collected during growing season belonged to 13 orders, 5 groups, 4 phyla, whose average density was 86 249.17 individuals·m^(-2). There were significant differences in soil animal species, densities, diversities and evenness among three plantations. Permanent grazing resulted in decrease of soil animal species and diversity. The average ammonification, nitrification and mineralization rates were 0.48 g·m^(-2)·a^(-1), 3.68 g·m^(-2)·a^(-1) and 4.16 g·m^(-2)·a^(-1), respectively. The ammonification rate in near-mature forest was higher than that in middle-age forests, while the order of nitrification and net mineralization rates was: middle-age forest without grazing < middle-age forest with grazing < near-mature forest with grazing (P<0.05). Soil N mineralization rate increased with soil animal amounts, but no significant relationship with diversity. The contribution of soil animals to N mineralization was different for different ecosystems due to influences of complex factors including grazing, soil characteristics, the quality and amount of litter on N mineralization.
文摘As the main body of Qinghai-Tibetan Plateau, North Tibet Plateau is one of three major sandy desertification regions in China and also a representative sandy desertification zone of Qinghai-Tibet Plateau. Accordingly, it is an important region for the study of recent sandy desertification processes and formation mechanism. From such aspects as desertified land types, areas and distributions etc., this paper analyses in detail the sandy desertification status on North Tibet Plateau, and qualitatively and quantitatively deals with the main factors that affect recent sandy desertification processes and the driving mechanism. Research results show that North Tibet Plateau is an important sandy desertification region in China characterized with large desertified land areas, diversified types, high severity, extensive distributions and serious damages. Sandy desertification occurrence and development resulted from combined effects of natural factors, anthropogenic factors, natural processes and man-made processes, of which climatic change is the main driving force.
基金This paper was supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. 2005CB 121104) and the National Natural Science Foundation of China (No. 40471064).
文摘Afforestation in sandy soils can cause soil acidification and affect Cu and Zn release. The behaviors of Cu and Zn release from contaminated arable sandy soils were investigated in the laboratory with the methods of simulated acidification of the soils. The results showed that soil acidification could change chemical forms of Cu and Zn in the soils, impel the transformation of Cu and Zn from carbonate associated fractions to exchangeable, organic matter and oxides associated fractions, and thus increase the release potential of Cu and Zn in the soils. The effect of the acidification on Zn leaching was more significant than that of Cu. Water solubility of Cu and Zn in the soils was increased with decreasing pH, and the solubility of Cu and Zn was increased exponentially at pH 3.8-4.5, and 6.2-6.5, respectively.
文摘The soils in the South China Sea Islands (SCSI) were divided into three types, namely, phospho-calc soils,skeletisols and coastic solonchaks, which were derived from bio-clastic and strongly calcareous sediments. Incomparison with their parent materials, the phospho-calc soils have higher contents of P, Zn, Cu, Ba, and Cd,which tend to increase gradually with time, and lower contents of Mg, Ca, Sr, B, V, Pb, and Mo, which tendto decrease by degrees with time. The above-mentioned constitnents in skeletisols and coastic solonchaks aresimilar to those in their parent materials except for P and Na. The factors atfecting element distribution aremainly special bioclimate and parent material, meanwhile, resulting in the remarkable iulluence on elementdistribution through soil-forming time.
文摘Soil erosion by water is one of the most important land degradation processes in the sloping rainfed lands in Pakistan. A study was conducted in the Dhrabi watershed of Pakistan to evaluate sediment yield associated with rainfall-runoff under various land-use practices. Five sub-catchments with sizes varying from 1.5 to 350 ha were selected for measurement of rainfall, runoff and sediment yield. Soil conservation techniques were also introduced to reduce the soil erosion. All runoff events occurred in the summer especially during monsoon season (July-September). Sediment yield of two small gully catchments ranged from 4.79 to 8.34 t/ha/yr in 2009, a relatively dry year. In 2010, the annual sediment yield was 8.15 to 12.31 t/ha. Terraced catchment with arable crops produced annual 4.1 t/ha of sediment as compared to 12.31 t/ha by the adjacent gully catchment showing high potential of terraces in reducing erosion. Runoff coefficients calculated for these catchments vary from 0.09 to 0.75. The macro and micro nutrients present in the sediment indicate that these nutrients are being depleted due to soil erosion.