Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts...Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.展开更多
The occurrence and transmission attenuation of surge is always a problem that researchers pay much attention to. The influence of the first wave height of landslide surge and the following transmission attenuation of ...The occurrence and transmission attenuation of surge is always a problem that researchers pay much attention to. The influence of the first wave height of landslide surge and the following transmission attenuation of surge are involved with many factors, which are mainly: landslide water entry angle, river course depth, river course geometrical properties and landslide mass and material, etc.. This thesis is mainly a research on the properties and transmission attenuation rules of landslide surge which is caused by linear narrow river course. Numerical value simulation will be applied in this thesis to discuss about the features and rules of the occurrence and transmission of surge in different landslide water entry angles and under different influences.展开更多
In the summers of 2006 and 2007, the atmospheric CO2 concentration and the wind speed in the Rongbuk Valley on the northern slope of Mr. Everest were measured by an ultrasonic anemometer with an Li-7500 CO2/H2O gas an...In the summers of 2006 and 2007, the atmospheric CO2 concentration and the wind speed in the Rongbuk Valley on the northern slope of Mr. Everest were measured by an ultrasonic anemometer with an Li-7500 CO2/H2O gas analyzer. The average CO2 concentration was 370.23±0.59 and 367.45±1.91 ppm in June of 2006 and 2007, respectively. The values are much lower than those at sites with similar latitudes and altitudes worldwide. The observed atmospheric CO2 concentration in Rongbuk Valley can be affected by the transportation of prevailing down-valley winds from the up-valley direction to the observation site. Our results suggest that the Mt. Everest region could be ideal for background atmospheric and environmental studies.展开更多
The Mw 7.8 Gorkha earthquake in Nepal on April 25, 2015, produced thousands of landslides in the Himalayan mountain range. After the earthquake, two field investigations along Araniko Highway were conducted. Then, usi...The Mw 7.8 Gorkha earthquake in Nepal on April 25, 2015, produced thousands of landslides in the Himalayan mountain range. After the earthquake, two field investigations along Araniko Highway were conducted. Then, using remote sensing technology and geographic information system(GIS)technology, 1481 landslides were identified along the Bhote Koshi river. Correlations between the spatial distribution of landslides with slope gradient and lithology were analyzed. The power-law relationship of the size distribution of earthquake-induced landslides was examined in both the Higher Himalaya and Lesser Himalaya. Possible reasons for the variability of the power exponent were explored by examining differences in the geological situations of these areas. Multi-threshold cellular automata were introduced to model the complexity of system components. Most of the landslides occurred at slope gradients of 30°–40°, and the landslide density was positively correlated with slope gradient. Landslides in hard rock areas were more common than in soft rock areas. The cumulative number-area distribution of landslides induced by the Gorkha earthquake exhibited a negative power-law relationship, but the power exponents were different: 1.13 in the Higher Himalaya, 1.36 and Lesser Himalaya. Furthermore,the geological conditions were more complex and varied in the Lesser Himalaya than in the Higher Himalaya, and the cellular automata simulation results indicated that, as the complexity of system components increased, the power exponent increased.Therefore, the variability of the power exponent of landslide size distribution should ascribe to the complexity of geological situations in the Bhote Koshi river watershed.展开更多
Abstract: Because of the complex topography in southwest region of China, the water level of the inland river has a large amplitude of variation which causes a frequent diversification of water content in the river s...Abstract: Because of the complex topography in southwest region of China, the water level of the inland river has a large amplitude of variation which causes a frequent diversification of water content in the river slope. The flow caused by the infiltration of the terminal slope stability will induce a great impact on the slope stability of wharf.. This paper uses an ideal elastic-plastic model and the Moore Coulomb yield criterion for numerical simulation. Through the b an k slop e stability of the overhead-type terminal s under the changes of water, we obtained the impact of all factors on the bank slope in the course of water lowering. It was found out that the impact from the cohesion of the geo-materials of the bank slope on the slope stability is greater than that from the internal friction angle.展开更多
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No. 40802067)the National Basic Research Program of China (973 program, Grant No.2008CB425803)+1 种基金the Basic Scientific Research Operating Expenses of Institute of Geomechanics, CAGS (Grant No. DZLXJK200805)the Land and Natural Resources of China (Grant No. 1212010914025)
文摘Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.
文摘The occurrence and transmission attenuation of surge is always a problem that researchers pay much attention to. The influence of the first wave height of landslide surge and the following transmission attenuation of surge are involved with many factors, which are mainly: landslide water entry angle, river course depth, river course geometrical properties and landslide mass and material, etc.. This thesis is mainly a research on the properties and transmission attenuation rules of landslide surge which is caused by linear narrow river course. Numerical value simulation will be applied in this thesis to discuss about the features and rules of the occurrence and transmission of surge in different landslide water entry angles and under different influences.
基金financed by the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q11-01)the National Basic Research Program of China(Grant No.2009CB421403)
文摘In the summers of 2006 and 2007, the atmospheric CO2 concentration and the wind speed in the Rongbuk Valley on the northern slope of Mr. Everest were measured by an ultrasonic anemometer with an Li-7500 CO2/H2O gas analyzer. The average CO2 concentration was 370.23±0.59 and 367.45±1.91 ppm in June of 2006 and 2007, respectively. The values are much lower than those at sites with similar latitudes and altitudes worldwide. The observed atmospheric CO2 concentration in Rongbuk Valley can be affected by the transportation of prevailing down-valley winds from the up-valley direction to the observation site. Our results suggest that the Mt. Everest region could be ideal for background atmospheric and environmental studies.
基金supported by the National Natural Science Foundation of China (Grant No. 41571004)National Program on Key Research Project of China (Grant No. 2016YFC0802206)+1 种基金Key Laboratory Foundation of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences (Grant No. KLMHESP-17-03)the Fundamental Research Funds for the Central Universities of China (Grant No. 2682016CX003)
文摘The Mw 7.8 Gorkha earthquake in Nepal on April 25, 2015, produced thousands of landslides in the Himalayan mountain range. After the earthquake, two field investigations along Araniko Highway were conducted. Then, using remote sensing technology and geographic information system(GIS)technology, 1481 landslides were identified along the Bhote Koshi river. Correlations between the spatial distribution of landslides with slope gradient and lithology were analyzed. The power-law relationship of the size distribution of earthquake-induced landslides was examined in both the Higher Himalaya and Lesser Himalaya. Possible reasons for the variability of the power exponent were explored by examining differences in the geological situations of these areas. Multi-threshold cellular automata were introduced to model the complexity of system components. Most of the landslides occurred at slope gradients of 30°–40°, and the landslide density was positively correlated with slope gradient. Landslides in hard rock areas were more common than in soft rock areas. The cumulative number-area distribution of landslides induced by the Gorkha earthquake exhibited a negative power-law relationship, but the power exponents were different: 1.13 in the Higher Himalaya, 1.36 and Lesser Himalaya. Furthermore,the geological conditions were more complex and varied in the Lesser Himalaya than in the Higher Himalaya, and the cellular automata simulation results indicated that, as the complexity of system components increased, the power exponent increased.Therefore, the variability of the power exponent of landslide size distribution should ascribe to the complexity of geological situations in the Bhote Koshi river watershed.
文摘Abstract: Because of the complex topography in southwest region of China, the water level of the inland river has a large amplitude of variation which causes a frequent diversification of water content in the river slope. The flow caused by the infiltration of the terminal slope stability will induce a great impact on the slope stability of wharf.. This paper uses an ideal elastic-plastic model and the Moore Coulomb yield criterion for numerical simulation. Through the b an k slop e stability of the overhead-type terminal s under the changes of water, we obtained the impact of all factors on the bank slope in the course of water lowering. It was found out that the impact from the cohesion of the geo-materials of the bank slope on the slope stability is greater than that from the internal friction angle.