The pollutants from the 15 rivers inflowing into Lake Taihu accounted for about 80% of the total amount of the pollutants inflowing into Lake Taihu. Therefore, overall treatment of the inflowing rivers of Taihu Lake i...The pollutants from the 15 rivers inflowing into Lake Taihu accounted for about 80% of the total amount of the pollutants inflowing into Lake Taihu. Therefore, overall treatment of the inflowing rivers of Taihu Lake is of great importance to the improvement of water environment in the valley and the eutrophication status in th lake. Firstly, the basic ideas, key taches and main methods for water pollution control of inflow rivers of Taihu Lake was put forward in this article, Basic on these theories, the pollutant source status in the comprehensive treatment zone of the 15 major inflow rivers was analysized, the countermeasures of pollution control and main regulation projects were introduced, and the total abatement of pollutants was predicted. With the implement of regulation projects, the number of rivers with water quality worse than Grade V among the 15 major inflow rivers had come from 9 to 3, and the eutrophication status of Taihu Lake had changed from medium level to light level. The overall treatment of the major inflow rivers of the Taihu Lake had achieved initial success.展开更多
Arsenic (As), Barium (Ba), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Lead (Pb) and Zinc (Zn) concentrations were investigated in sediments collected from six...Arsenic (As), Barium (Ba), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Lead (Pb) and Zinc (Zn) concentrations were investigated in sediments collected from sixteen sampling sites in the Lubumbashi river basin and five sites in Kafubu, Kimilolo and Kinkalabwamba rivers during February, March and April 2016. Analyses of the samples were carried out using a portable X-RFS (X-Ray Fluorescence Spectrometer). Water pH and OM (Organic Matter) content of the sediments were also determined. Trace metal toxicity risk to aquatic organisms was assessed using SQGs (Sediment Quality Guidelines)---TELs (Threshold Effect Levels) and PELs (Probable Effect Levels)---for freshwater sediments. Mean values ofpH and OM ranged from 4.2 to 7.8 and from 1.27% to 6.22%, respectively. The highest mean levels of trace metals in sediments were 5,438 mg·kg-1·dw and 902.5 mg·kg-1·dw for Cu and Co, respectively in Lubumbashi river 1.45 kilometer downward the Lubumbashi Slag heap, 1,534.5 mg·kg-1·dw and 342 mg·kg-1·dwdw for Zn and Pb, respectively at the confluence of Lubumbashi and Kafubu rivers, 108,900 mg·kg-1·dw, 547 mg·kg-1·dw and 174.5 mg·kg-1·dw for Fe, Ba and Cr, respectively in Kinkalabwamba river, 531 mg·kg-1·dw and 22 mg-kgl'dw for Mn and Cd, respectively in Kimilolo river, and 37 mg·kg-1·dw for As at the confluence of Tshondo and Lubumbashi rivers. The mean concentrations of As, Cd, Cr, Cu, Pb and Zn in the sediments exceeded the corresponding SQGs' PELvalues and could have adverse effects on aquatic organisms of those rivers. Trace metal contamination of the studied sediments might he partially attributed to natural processes, unplanned urbanization and poor waste management and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.展开更多
River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help...River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.展开更多
Polychlorinated naphthalene (PCNs) is similar structure and toxicity of dioxin (PCDD/Fs), it can be detected in the global environmental and biological samples. This paper introduces the main source of PCNs in the...Polychlorinated naphthalene (PCNs) is similar structure and toxicity of dioxin (PCDD/Fs), it can be detected in the global environmental and biological samples. This paper introduces the main source of PCNs in the environment and environmental fate, sludge PCNs pollution level in 1.48-28.21 ng/g (dry weight), PCN-TEQs content is in 0.11-2.45 pg/g (dry weight), far below the content of other areas in foreign countries. The results showed that the sources of wastewater, sewage treatment plant is an important factor affecting the level of polychlorinated naphthalene pollution. Discussion on the distribution characteristics of sludge in polychlorinated naphthalene congeners, found that the distribution of PCNs congeners in all of the samples is largely the same, it is mainly two chloride and three chloro naphthalene, it showed that the pollution source has a certain resemblance. Research shows that, polychlorinated naphthalenes city sludge mainly comes from industrial pollution sources; in addition, an important source of waste incineration, burning heat treatment process is caused by polychlorinated naphthalene pollution.展开更多
This study addressed the relationship of river water pollution characteristics to land covers and human activities in the catchments in a complete river system named Cao-E River in eastern China.Based on the hydrogeoc...This study addressed the relationship of river water pollution characteristics to land covers and human activities in the catchments in a complete river system named Cao-E River in eastern China.Based on the hydrogeochemical data collected monthly over a period of 3 years,cluster analysis(CA) and principal component analysis(PCA) were adopted to categorize the river reaches and reveal their pollution characteristics.According to the differences of water quality in the river reaches and land use patterns and average population densities in their catchments,the whole river system could be categorized into three groups of river reaches,i.e.,non-point sources pollution reaches(NPSPR),urban reaches(UR) and mixed sources pollution reaches(MSPR).In UR and MSPR,the water quality was mainly impacted by nutrient and organic pollution,while in NPSPR nutrient pollution was the main cause.The nitrate was the main nitrogen form in NPSPR and particulate phosphorus was the main phosphorus form in MSPR.There were no apparent trends for the variations of pollutant concentrations with increasing river flows in NPSPR and MSPR,while in UR the pollutant concentrations decreased with increasing river flows.Thus dry season was the critical period for water pollution control in UR.Therefore,catchment land covers and human activities had significant impact on river reach water pollution type,nutrient forms and water quality responses to hydrological conditions,which might be crucial for developing strategies to combat water pollution in watershed scale.展开更多
文摘The pollutants from the 15 rivers inflowing into Lake Taihu accounted for about 80% of the total amount of the pollutants inflowing into Lake Taihu. Therefore, overall treatment of the inflowing rivers of Taihu Lake is of great importance to the improvement of water environment in the valley and the eutrophication status in th lake. Firstly, the basic ideas, key taches and main methods for water pollution control of inflow rivers of Taihu Lake was put forward in this article, Basic on these theories, the pollutant source status in the comprehensive treatment zone of the 15 major inflow rivers was analysized, the countermeasures of pollution control and main regulation projects were introduced, and the total abatement of pollutants was predicted. With the implement of regulation projects, the number of rivers with water quality worse than Grade V among the 15 major inflow rivers had come from 9 to 3, and the eutrophication status of Taihu Lake had changed from medium level to light level. The overall treatment of the major inflow rivers of the Taihu Lake had achieved initial success.
文摘Arsenic (As), Barium (Ba), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Lead (Pb) and Zinc (Zn) concentrations were investigated in sediments collected from sixteen sampling sites in the Lubumbashi river basin and five sites in Kafubu, Kimilolo and Kinkalabwamba rivers during February, March and April 2016. Analyses of the samples were carried out using a portable X-RFS (X-Ray Fluorescence Spectrometer). Water pH and OM (Organic Matter) content of the sediments were also determined. Trace metal toxicity risk to aquatic organisms was assessed using SQGs (Sediment Quality Guidelines)---TELs (Threshold Effect Levels) and PELs (Probable Effect Levels)---for freshwater sediments. Mean values ofpH and OM ranged from 4.2 to 7.8 and from 1.27% to 6.22%, respectively. The highest mean levels of trace metals in sediments were 5,438 mg·kg-1·dw and 902.5 mg·kg-1·dw for Cu and Co, respectively in Lubumbashi river 1.45 kilometer downward the Lubumbashi Slag heap, 1,534.5 mg·kg-1·dw and 342 mg·kg-1·dwdw for Zn and Pb, respectively at the confluence of Lubumbashi and Kafubu rivers, 108,900 mg·kg-1·dw, 547 mg·kg-1·dw and 174.5 mg·kg-1·dw for Fe, Ba and Cr, respectively in Kinkalabwamba river, 531 mg·kg-1·dw and 22 mg-kgl'dw for Mn and Cd, respectively in Kimilolo river, and 37 mg·kg-1·dw for As at the confluence of Tshondo and Lubumbashi rivers. The mean concentrations of As, Cd, Cr, Cu, Pb and Zn in the sediments exceeded the corresponding SQGs' PELvalues and could have adverse effects on aquatic organisms of those rivers. Trace metal contamination of the studied sediments might he partially attributed to natural processes, unplanned urbanization and poor waste management and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.
基金Under the auspices of National Natural Science Foundation of China(No.41371538)Independent Project of State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.SKLURE2008-1-02)
文摘River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.
文摘Polychlorinated naphthalene (PCNs) is similar structure and toxicity of dioxin (PCDD/Fs), it can be detected in the global environmental and biological samples. This paper introduces the main source of PCNs in the environment and environmental fate, sludge PCNs pollution level in 1.48-28.21 ng/g (dry weight), PCN-TEQs content is in 0.11-2.45 pg/g (dry weight), far below the content of other areas in foreign countries. The results showed that the sources of wastewater, sewage treatment plant is an important factor affecting the level of polychlorinated naphthalene pollution. Discussion on the distribution characteristics of sludge in polychlorinated naphthalene congeners, found that the distribution of PCNs congeners in all of the samples is largely the same, it is mainly two chloride and three chloro naphthalene, it showed that the pollution source has a certain resemblance. Research shows that, polychlorinated naphthalenes city sludge mainly comes from industrial pollution sources; in addition, an important source of waste incineration, burning heat treatment process is caused by polychlorinated naphthalene pollution.
基金Supported by the National Natural Science Foundation of China (No. 40871104)the National High Technology Research andDevelopment Program (863 Program) of China (No. 2007AA10Z218)
文摘This study addressed the relationship of river water pollution characteristics to land covers and human activities in the catchments in a complete river system named Cao-E River in eastern China.Based on the hydrogeochemical data collected monthly over a period of 3 years,cluster analysis(CA) and principal component analysis(PCA) were adopted to categorize the river reaches and reveal their pollution characteristics.According to the differences of water quality in the river reaches and land use patterns and average population densities in their catchments,the whole river system could be categorized into three groups of river reaches,i.e.,non-point sources pollution reaches(NPSPR),urban reaches(UR) and mixed sources pollution reaches(MSPR).In UR and MSPR,the water quality was mainly impacted by nutrient and organic pollution,while in NPSPR nutrient pollution was the main cause.The nitrate was the main nitrogen form in NPSPR and particulate phosphorus was the main phosphorus form in MSPR.There were no apparent trends for the variations of pollutant concentrations with increasing river flows in NPSPR and MSPR,while in UR the pollutant concentrations decreased with increasing river flows.Thus dry season was the critical period for water pollution control in UR.Therefore,catchment land covers and human activities had significant impact on river reach water pollution type,nutrient forms and water quality responses to hydrological conditions,which might be crucial for developing strategies to combat water pollution in watershed scale.